Computational Materials Engineering


Book Description

Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency. Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales. The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application. - Presents the numerical approaches for high-accuracy calculations - Provides researchers with essential information on the methods capable of exact representation of microstructure morphology - Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more - Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process - Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time




Computer Applications in Metal Processing


Book Description




Computer Applications in Shaping & Forming of Materials


Book Description

This work focuses on the use of computers in the general area of shaping and forming of materials. Topics discussed include mathematical modeling, computer simulation and expert system applications, to bulk and sheet metal forming, computational and numerical methods, constitutive equations, material testing and evaluation, process modeling, plastic instability and forming limits.




CIM Bulletin


Book Description




Introduction to Steels


Book Description

The book briefly describes the structure, properties and applications of various grades of steel, primarily aimed at non-metallurgical students from other engineering streams. The book consists of nine chapters covering most of the important types of steels and their physical metallurgy, microstructure and engineering applications including iron-carbon diagram, heat treatment, surface hardening methods, effect of alloying, specific applications, selection of materials, case studies and so forth. The book also contains subjective and objective questions aimed at exam preparation. Key Features Exclusive title aimed at introduction to steels for non-metallurgy audience Includes microstructure, composition, and properties of all the most commonly used steels Describes the heat treatments and the required alloying additions to process steel for the intended applications Discusses effects of alloying elements on steel Explores development of steels for specialized areas such as the automobile, aerospace, and nuclear industries