Computer Architecture for Scientists


Book Description

The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.




Scientific Programming and Computer Architecture


Book Description

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.




Computer Architecture for Scientists


Book Description

A principled, high-level view of computer performance and how to exploit it. Ideal for software architects and data scientists.




Computer Architecture


Book Description

Hardware correctness is becoming ever more important in the design of computer systems. The authors introduce a powerful new approach to the design and analysis of modern computer architectures, based on mathematically well-founded formal methods which allows for rigorous correctness proofs, accurate hardware costs determination, and performance evaluation. This book develops, at the gate level, the complete design of a pipelined RISC processor with a fully IEEE-compliant floating-point unit. In contrast to other design approaches, the design presented here is modular, clean and complete.




Computer System Architecture


Book Description




Introduction to High Performance Computing for Scientists and Engineers


Book Description

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author




Computer Systems Organization & Architecture


Book Description

This book provides up-to-date coverage of fundamental concepts for the design of computers and their subsystems. It presents material with a serious but easy-to-understand writing style that makes it accessible to readers without sacrificing important topics. The book emphasizes a finite state machine approach to CPU design, which provides a strong background for reader understanding. It forms a solid basis for readers to draw upon as they study this material and in later engineering and computer science practice. The book also examines the design of computer systems, including such topics as memory hierarchies, input/output processing, interrupts, and direct memory access, as well as advanced architectural aspects of parallel processing. To make the material accessible to beginners, the author has included two running examples of increasing complexity: the Very Simple CPU, which contains four instruction sets and shows very simple CPU design; and the Relatively Simple CPU which contains 16 instruction sets and adds enough complexity to illustrate more advanced concepts. Each chapter features a real-world machine on which the discussed organization and architecture concepts are implemented. This book is designed to teach computer organization/architecture to engineers and computer scientists.




Parallel Computer Organization and Design


Book Description

Teaching fundamental design concepts and the challenges of emerging technology, this textbook prepares students for a career designing the computer systems of the future. In-depth coverage of complexity, power, reliability and performance, coupled with treatment of parallelism at all levels, including ILP and TLP, provides the state-of-the-art training that students need. The whole gamut of parallel architecture design options is explained, from core microarchitecture to chip multiprocessors to large-scale multiprocessor systems. All the chapters are self-contained, yet concise enough that the material can be taught in a single semester, making it perfect for use in senior undergraduate and graduate computer architecture courses. The book is also teeming with practical examples to aid the learning process, showing concrete applications of definitions. With simple models and codes used throughout, all material is made open to a broad range of computer engineering/science students with only a basic knowledge of hardware and software.




Computer Organization and Design RISC-V Edition


Book Description

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud




Quantum Computer Systems


Book Description

This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.