Computer-Assisted Simulation of Dynamic Systems with Block Diagram Languages


Book Description

Computer-Assisted Simulation of Dynamic Systems with Block Diagram Languages explores the diverse applications of these indispensable simulation tools. The first book of its kind, it bridges the gap between block diagram languages and traditional simulation practice by linking the art of analog/hybrid computation with modern pc-based technology. Direct analogies are explored as a means of promoting interdisciplinary problem solving. The reader progresses step-by-step through the creative modeling and simulation of dynamic systems from disciplines as diverse from each other as biology, electronics, physics, and mathematics. The book guides the reader to the dynamic simulation of chaos, conformal mapping, VTOL aircraft, and other highly specialized topics. Alternate methods of simulating a single device to emphasize the dynamic rather than schematic features of a system are provided. Nearly-forgotten computational techniques like that of integrating with respect to a variable other than time are revived and applied to simulation and signal processing. Actual working models are found throughout this eminently readable book, along with a complete international bibliography for individuals researching subjects in dynamic systems. This is an excellent primary text for undergraduate and graduate courses in computer simulation or an adjunct text for a dynamic systems course. It is also recommended as a professional reference book.




Advanced System Modelling and Simulation with Block Diagram Languages


Book Description

Advanced System Modelling and Simulation with Block Diagram Languages explores and describes the use of block languages in dynamic modelling and simulation. The application of block diagrams to dynamic modelling is reviewed, not only in terms of known components and systems, but also in terms of the development of new systems. Methods by which block diagrams clarify the dynamic essence of systems and their components are emphasized throughout the book, and sufficient introductory material is included to elucidate the book's advanced material. Widely used continuous dynamic system simulation (CDSS) languages are analyzed, and their technical features are discussed. This self-contained resource includes a review section on block diagram algebra and applied transfer functions, both of which are important mathematical subjects, relevant to the understanding of continuous dynamic system simulation.




Simulation of Dynamic Systems with MATLAB and Simulink


Book Description

" a seminal text covering the simulation design and analysis of a broad variety of systems using two of the most modern software packages available today. particularly adept [at] enabling students new to the field to gain a thorough understanding of the basics of continuous simulation in a single semester, and [also provides] a more advanced tre




Simulation-based Optimization of Energy Efficiency in Production


Book Description

The importance of the energy and commodity markets has steadily increased since the first oil crisis. The sustained use of energy and other resources has become a basic requirement for a company to competitively perform on the market. The modeling, analysis and assessment of dynamic production processes is often performed using simulation software. While existing approaches mainly focus on the consideration of resource consumption variables based on metrologically collected data on operating states, the aim of this work is to depict the energy consumption of production plants through the utilization of a continuous simulation approach in combination with a discrete approach for the modeling of material flows and supporting logistic processes. The complex interactions between the material flow and the energy usage in production can thus be simulated closer to reality, especially the depiction of energy consumption peaks becomes possible. An essential step towards reducing energy consumption in production is the optimization of the energy use of non-value-adding production phases.




Microtransducer CAD


Book Description

Computer-aided-design (CAD) of semiconductor microtransducers is relatively new in contrast to their counterparts in the integrated circuit world. Integrated silicon microtransducers are realized using microfabrication techniques similar to those for standard integrated circuits (ICs). Unlike IC devices, however, microtransducers must interact with their environment, so their numerical simulation is considerably more complex. While the design of ICs aims at suppressing "parasitic” effects, microtransducers thrive on optimizing the one or the other such effect. The challenging quest for physical models and simulation tools enabling microtransducer CAD is the topic of this book. The book is intended as a text for graduate students in Electrical Engineering and Physics and as a reference for CAD engineers in the microsystems industry.




Software for Computer Control 1982


Book Description

Software for Computer Control 1982 covers the proceedings of the Third IFAC/IFIP Symposium. The book discusses the state of software development for digital computer applications for science and control. With a total of 73 papers, the book covers topics such as real-time language and operating systems; man-machine communication software; software for robots; software for distributed control systems; C.A.D. of digital computer controls systems; algorithms for digital computer control; control software engineering and management; and industrial applications. Computer scientists, engineers, and I.T. professionals will find this book interesting, since it provides discussions on the various applications of computer programs.




Modeling, Identification and Simulation of Dynamical Systems


Book Description

This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.










Simulation of Control Systems


Book Description

This volume investigates simulation and computer-aided control system designs. The book covers the use of models and program packages, their theoretical aspects and practical applications, and uses illustrative case studies to give a comprehensive view of this fast developing science.