Visualization in Science Education


Book Description

This book addresses key issues concerning visualization in the teaching and learning of science at any level in educational systems. It is the first book specifically on visualization in science education. The book draws on the insights from cognitive psychology, science, and education, by experts from five countries. It unites these with the practice of science education, particularly the ever-increasing use of computer-managed modelling packages.




NCRR Reporter


Book Description







Computer Aids to Chemistry


Book Description







Multiple Representations in Chemical Education


Book Description

Chemistry seeks to provide qualitative and quantitative explanations for the observed behaviour of elements and their compounds. Doing so involves making use of three types of representation: the macro (the empirical properties of substances); the sub-micro (the natures of the entities giving rise to those properties); and the symbolic (the number of entities involved in any changes that take place). Although understanding this triplet relationship is a key aspect of chemical education, there is considerable evidence that students find great difficulty in achieving mastery of the ideas involved. In bringing together the work of leading chemistry educators who are researching the triplet relationship at the secondary and university levels, the book discusses the learning involved, the problems that students encounter, and successful approaches to teaching. Based on the reported research, the editors argue for a coherent model for understanding the triplet relationship in chemical education.




Pedagogic Roles of Animations and Simulations in Chemistry Courses


Book Description

Chemistry can be a very difficult topic for students to understand, in part because it requires students to think abstractly about the behaviors and interactions of atoms, molecules, and ions. Visualizations in chemistry can help to make chemistry at the particulate level less abstract because students can actually "see" these particles, and dynamic visualizations can help students understand how these particles interact and change over time as a reaction occurs. The chapters in this book are divided into four categories: Theoretical aspects of visualization design, design and evaluation of visualizations, visualizations studied by chemical education researchers, and visualizations designed for the chemistry classroom. Chapters 2-4 of this book focus on theoretical issues and concerns in developing and using animations and simulations to teach chemistry concepts. The theoretical frameworks described in these chapters not only include learning theories [such as Behaviorism, Cognitive Load Theory, and Vygotsky's Zone of Proximal Development], but also describe design principles that are informed by educational research on learning with multimedia. Both of these frameworks can be used to improve the way dynamic visualizations are designed, created, and utilized in the chemistry classroom. Chapters 5-8 of this book provide two examples of paired articles, in which the first chapter introduces and describes how the dynamic visuals were designed and created for use in chemistry instruction and the second chapter describes a chemical education research study performed to evaluate the effectiveness of using these dynamic visuals for chemistry instruction. Chapters 5 and 6 focus on interactive simulations created as part of the PhET Interactive Simulations Project. Chapters 7 and 8 focus on the virtual-world program Second Life and how it is being used to teach chemistry lessons. Chapters 9-14 of this book describe the results of chemical education research studies on the use of animations and simulations. Chapters 15-17 describe how specific dynamic visualization programs and modules were designed and how they should be utilized in the chemistry classroom to improve student learning.




Comprehensive Chemometrics


Book Description

Comprehensive Chemometrics, Second Edition, Four Volume Set features expanded and updated coverage, along with new content that covers advances in the field since the previous edition published in 2009. Subject of note include updates in the fields of multidimensional and megavariate data analysis, omics data analysis, big chemical and biochemical data analysis, data fusion and sparse methods. The book follows a similar structure to the previous edition, using the same section titles to frame articles. Many chapters from the previous edition are updated, but there are also many new chapters on the latest developments. Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience




Essential Computer Graphics Techniques for Modeling, Animating, and Rendering Biomolecules and Cells


Book Description

The book helps readers develop fundamental skills in the field of biomedical illustrations with a training approach based on step-by-step tutorials with a practical approach. Medical/scientific illustration mainly belongs to professionals in the art field or scientists trying to create artistic visualization. There is not a merging between the two, even if the demand is high. This leads to accurate scientific images with no appeal (or trivial mistakes), or appealing images with huge scientific mistakes. This gives the fundamentals to the scientist so they can apply CG techniques that give a more scientific approach creating mistake-free images. Key Features This book provides a reference where none exist. Without overwhelming the reader with software details it teaches basic principles to give readers to fundamentals to create. Demonstrates professional artistic tools used by scientists to create better images for their work. Coverage of lighting and rendering geared specifically for scientific work that is toturoal based with a practical approach. Included are chapter tutorials, key terms and end of chapter references for Art and Scientific References for each chapter.