Computer Methods for Circuit Analysis and Design


Book Description

This text is about methods used for the computer simulation of analog systems. It concentrates on electronic applications, but many of the methods are applicable to other engineering problems as well. This revised edition (1st, 1983) encompasses recent theoretical developments and program-writing tips for computer-aided design. About 60% of the text is suitable for a senior-level course in circuit theory. The whole text is suitable for graduate courses or as a reference for scientists and engineers who seek information in the field. Annotation copyright by Book News, Inc., Portland, OR




Fast Analytical Techniques for Electrical and Electronic Circuits


Book Description

The only method of circuit analysis known to most engineers and students is nodal or loop analysis. Although this works well for obtaining numerical solutions, it is almost useless for obtaining analytical solutions in all but the simplest cases. In this unusual 2002 book, Vorpérian describes remarkable alternative techniques to solve, almost by inspection, complicated linear circuits in symbolic form and obtain meaningful analytical answers for any transfer function or impedance. Although not intended to replace traditional computer-based methods, these techniques provide engineers with a powerful set of tools for tackling circuit design problems. They also have great value in enhancing students' understanding of circuit operation, making this an ideal course book, and numerous problems and worked examples are included. Originally developed by Professor David Middlebrook and others at Caltech (California Institute of Technology), the techniques described here are now widely taught at institutions and companies around the world.




Computer Methods for Analysis of Mixed-Mode Switching Circuits


Book Description

Computer Methods for Analysis of Mixed-Mode Switching Circuits provides an in-depth treatment of the principles and implementation details of computer methods and numerical algorithms for analysis of mixed-mode switching circuits. Major topics include: -Computer-oriented formulation of mixed-mode switching circuits, -Network functions of linear and nonlinear time-varying systems, -Numerical Laplace inversion based integration algorithms and inconsistent initial conditions, -Time domain analysis of periodically switched linear and nonlinear circuits including response, sensitivity, noise, clock jitter, and statistical quantities, -Time domain analysis of circuits with internally controlled switches and over-sampled sigma-delta modulators, -Tellegen's theorem, frequency reversal theorem, and transfer function theorem of periodically switched linear circuits and their applications, -Frequency domain analysis of periodically switched linear and nonlinear circuits including response, sensitivity, group delay, noise, and statistical quantities.




Introduction to Circuit Analysis and Design


Book Description

Introduction to Circuit Analysis and Design takes the view that circuits have inputs and outputs, and that relations between inputs and outputs and the terminal characteristics of circuits at input and output ports are all-important in analysis and design. Two-port models, input resistance, output impedance, gain, loading effects, and frequency response are treated in more depth than is traditional. Due attention to these topics is essential preparation for design, provides useful preparation for subsequent courses in electronic devices and circuits, and eases the transition from circuits to systems.




Computational Methods in Circuit Simulation


Book Description

COMPUTATIONAL METHODS IN CIRCUIT SIMULATION INCUDES THEORY, NUMERICAL TECHNIQUES, AND RECIPES ON HOW TO BUILD A SIMULATOR FOR THE ANALYSIS OF VERY LARGE CIRCUITS WITH COMPLEX DEVICE AND COMPONENT MODELSThis book provides theoretical basis of circuit simulation with special emphasis on the simulation of very large circuits and systems. The results are presented in algorithmic form and recipes that can be easily translated into computer code. The book:* Explains the theoretical basis of circuit formulation and describes the Extended Nodal Analysis, which is a generalization of the traditional nodal and modified nodal analysis that allows the inclusion of complex device models.* Describes how to build the circuit equations from the input netlist using the stamp approach.* Presents the solution of large linear equations using sparse matrix techniques, partitioning, iterative and projection methods.* Covers DC solution or the solution of nonlinear algebraic equations, including variations of Newton method and piecewise-linear techniques.* Covers transient analysis or solution of algebraic-differential equations, including integration formulas, stability, error estimation and step-size control.* Explains reduced-order modeling for the simulation of very large dynamic circuits and systems.* Includes sensitivity analysis.




Computational Methods In Large Scale Simulation


Book Description

This volume documents the research carried out by visiting scientists attached to the Institute for Mathematical Sciences (IMS) at the National University of Singapore and the Institute of High Performance Computing (IHPC) under the program “Advances and Mathematical Issues in Large Scale Simulation.” From 2002 to 2003, researchers from various countries gathered to initiate interesting and innovative work on various themes related to multiscale simulation and fast algorithms.Today, modeling and simulation are used extensively to solve complex problems and to reduce the use of experimentation during the design and analysis stage. It is important to know the various issues that have to be considered in the successful development of computational methodologies for such work.This volume is a compilation of the research by various visiting scientists in the area of modeling and multiscale simulation. Each article covers a major project and documents how computational methodology, mathematical modeling, high performance computing and simulation are combined in a multiscale scheme to solve a variety of complex problems. Some of these include the design, synthesis, processing, characterization and manufacture of nanomaterials and nanostructures, new algorithms for computational work, and grid computing.Through the included examples, readers can realize the vast potential of computational modeling and large scale simulation for the solution of problems in a variety of disciplines and applications.













Design of Analog Circuits Through Symbolic Analysis


Book Description

"Symbolic analyzers have the potential to offer knowledge to sophomores as well as practitioners of analog circuit design. Actually, they are an essential complement to numerical simulators, since they provide insight into circuit behavior which numerical "