Computer Modeling and Simulations of Complex Biological Systems, 2nd Edition


Book Description

This unique text explores the use of innovative modeling techniques in effecting a better understanding of complex diseases such as AIDS and cancer. From a way of representing the computational properties of protein-folding problems to computer simulation of bimodal neurons and networks, Computer Modeling and Simulations of Complex Biological Systems examines several modeling methodologies and integrates them across a variety of disciplines. This interdisciplinary approach suggests new ways to solve complex problems pertaining to biological systems. Written in clear and simple terms appropriate for both the novice and the experienced researcher, the book presents a step-by-step approach to the subject and includes numerous examples that explain the concepts presented in the text.




Computer Simulations with Mathematica


Book Description

The study of natural phenomena using computer simulation is a major new research tool in the physical, chemical, biological and social sciences. It is useful for studying simple systems, and it is essential for the study of complex systems. Using Mathematica, an integrated software environment for scientific programming, numerical analysis and visualization, this book describes computer simulations applicable to a wide range of phenomena.




Catalyzing Inquiry at the Interface of Computing and Biology


Book Description

Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress. To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies.




Scientific Modeling and Simulations


Book Description

Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].




Modeling Life


Book Description

This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?




Introduction to Computational Science


Book Description

The essential introduction to computational science—now fully updated and expanded Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors




Stochastic Modelling for Systems Biology, Second Edition


Book Description

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.




ACRI ’96


Book Description

ACRI'96 is the second conference on Cellular Automata for Research and Industry; the first one was held in Rende (Cosenza), on September 29-30, 1994. This second edition confirms the growing interest in Cellular Automata currently present both in the scientific community and within the industrial applications world. Cellular Automata-based computational models, besides capturing the attention of scientists working in different fields, open new perspectives of intersection between different and historically distant areas of scientific knowledge, from Physics to Biology, to Computer Science. ACRI'96 aims at providing a forum both for researchers working in the Cellular Automata field, and for those who foresee the possibility to verify on concrete domains of application the impact of their solutions, as well as for those who are looking for a possibility of reflection upon the specific concept of parallel and distributed computation provided by Cellular Automata. This book contains the works presented at the conference. The invited papers cover different aspects of Cellular Automata. T. Worsch gives a classification of Cellular Automata mapping on the existent computational frameworks for the simulation of their behavior. One of the most mature areas where Cellular Automata showed their value is Physics: B. Chopard illustrates recent results on wave modeling, and some possible applications. According to the general purpose of ACRI'96 of transfering research results to the industrial world, F.




Modern Physical Chemistry: Engineering Models, Materials, and Methods with Applications


Book Description

This volume brings together innovative research, new concepts, and novel developments in the application of new tools for chemical engineers. It presents significant research, reporting on new methodologies and important applications in the field of chemical engineering. Highlighting theoretical foundations, real-world cases, and future directions, this book covers selected topics in a variety of areas, including: chemoinformatics and computational chemistry advanced dielectric materials nanotechniques polymer composites It also presents several advanced case studies. The topics discussed in this volume will be valuable for researchers, practitioners, professionals, and students of chemistry material and chemical engineering.




Systemic Approaches in Bioinformatics and Computational Systems Biology: Recent Advances


Book Description

The convergence of biology and computer science was initially motivated by the need to organize and process a growing number of biological observations resulting from rapid advances in experimental techniques. Today, however, close collaboration between biologists, biochemists, medical researchers, and computer scientists has also generated remarkable benefits for the field of computer science. Systemic Approaches in Bioinformatics and Computational Systems Biology: Recent Advances presents new techniques that have resulted from the application of computer science methods to the organization and interpretation of biological data. The book covers three subject areas: bioinformatics, computational biology, and computational systems biology. It focuses on recent, systemic approaches in computer science and mathematics that have been used to model, simulate, and more generally, experiment with biological phenomena at any scale.