Computer Modelling of Fluids Polymers and Solids


Book Description

Computer Modelling techniques have developed very rapidly during the last decade, and interact with many contemporary scientific disciplines. One of the areas of greatest activity has concerned the modelling of condensed phases, including liquids solids and amorphous systems, where simulations have been used to provide insight into basic physical processes and in more recent years to make reliable predictions of the properties of the systems simulated. Indeed the predictive role of simulations is increasingly recognised both in academic and industrial contexts. Current active areas of application include topics as diverse as the viscosity of liquids, the conformation of proteins, the behaviour of hydrogen in metals, the diffusion of molecules in porous catalysts and the properties of micelles. This book, which is based on a NATO ASI held at the University of Bath, UK, from September 5th-17th, 1988, aims to give a general survey of this field, with detailed discussions both of methodologies and of applications. The earlier chapters of the book are devoted mainly to techniques and the later ones to recent simulation studies of fluids, polymers (including biological molecules) and solids. Special attention is paid to the role of interatomic potentials which are the fundamental physical input to simulations. In addition, developments in computer hardware are considered in depth, owing to the crucial role which such developments are playing in the expansion of the horizons of computer modelling studies.




Computational Multiscale Modeling of Fluids and Solids


Book Description

The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the basic physical principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale, and the chapters follow this classification. The book explains in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. The second edition has been expanded by new sections in computational models on meso/macroscopic scales for ocean and atmosphere dynamics. Numerous applications in environmental physics and geophysics had been added.




Mechanics of Solid Polymers


Book Description

Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. - Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications - Discusses material models for different polymer types - Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work




Computer Simulation in Chemical Physics


Book Description

Proceedings of a NATO ASI held near Alghero, Italy in September 1992. The school focused on recent progress in applying the methods of computer simulation to problems in chemical physics. The 14 lectures address topics including the molecular dynamics method, advanced Monte Carlo techniques, thermodynamic constraints, computer simulations in the Gibbs ensemble, effective pair potentials and beyond, first principles molecular dynamics, computer simulation methods for nonadiabatic dynamics in condensed systems, long length- scale aspects of self organization phenomena, computer simulation of polymers, computer simulation of surfactants, parallel computing and molecular dynamics simulations, and scientific visualization--a user view. Annotation copyright by Book News, Inc., Portland, OR




Thermodynamic Data


Book Description

With the rapid development of fast processors, the power of a mini-super computer now exists in a lap-top box. Quite sophisticated techniques are be coming accessible to geoscientists, thus making disciplinary boundaries fade. Chemists and physicists are no longer shying away from computational mineral ogical and material science problems "too complicated to handle." Geoscientists are willing to delve into quantitative physico-chemical methods and open those "black boxes" they had shunned for several decades but with which had learned to live. I am proud to present yet another volume in this series which is designed to break the disciplinary boundaries and bring the geoscientists closer to their chemist and physicist colleagues in achieving a common goal. This volume is the result of an international collaboration among many physical geochemists (chemists, physicists, and geologists) aiming to understand the nature of material. The book has one common theme: namely, how to determine quantitatively through theory the physico-chemical parameters of the state of a solid or fluid.




Computer Modelling of Polymer Processing


Book Description

The use of computers to numerically analyse polymer processing was first reported as for back as the 1950's, and the first commercial software became available around 20 years ago. Much research has been carried out since that time, and this report aims to summarise contemporary trends in both commercial and academic research and development. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database provides useful references for further reading.




Computer Modeling in Inorganic Crystallography


Book Description

Computer simulation techniques are now having a major impact on almost all areas of the physical and biological sciences. This book concentrates on the application of these methods to inorganic materials, including topical and industrially relevant systems including zeolites and high Tc superconductors. The central theme of the book is the use of modern simulation techniques as a structural tool in solid state science. Computer Modelling in Inorganic Crystallography describes the current range of techniques used in modeling crystal structures, and strong emphasis is given to the use of modeling in predicting new crystal structures and refining partially known structures. It also reviews new opportunities being opened up by electronic structure calculation and explains the ways in which these techniques are illuminating our knowledge of bonding in solids. - Includes a thorough review of the technical basis of relevant contemporary methodologies including minimization, Monte-Carlo, molecular dynamics, simulated annealing methods, and electronic structure methods - Highlights applications to amorphous and crystalline solids - Surveys simulations of surface and defect properties of solids - Discusses applications to molecular and inorganic solids




Multiscale Simulation and Design


Book Description

Annotation Written by leading industry experts and scholars, this volume reviews and analyzes recent developments in the field of multiscale simulation.




New Approaches to Problems in Liquid State Theory


Book Description

The theory of simple and complex fluids has made considerable recent progress, due to the emergence of new concepts and theoretical tools, and also to the availability of a large body of new experimental data on increas ingly complex systems, as well as far-reaching methodological developments in numerical simulations. This AS! aimed at providing a comprehensive overview of the most significant theoretical developments, supplemented by a few presentations of cutting-edge simulation and experimental work. The impact of the Institute in the overall landscape of Statistical Mechanics received an important recognition with its inclusion in the list of satellite events of STATPHYS20, the triennal international conference on Statistical Physics held in Paris in July 1998. These Proceedings contain the texts of the 13 Lecture Courses and 9 Invited Seminars delivered at Patti. Two clear trends emerge from these Proceedings: first, the diversity of new and unexpected theoretical results relating to classic models of liq uids, which have recently been subjected to fresh scrutiny; and secondly the parallel emergence of new concepts, models and methods, aimed at investigating complex fluids and phenomena, like the phase behaviour of fluids in pores, macromolecular assemblies, and the glass transition. Many of the new tools have their roots in traditional liquid state theory, and, in conjunction with fresh input from related fields, allow it wider applicability.




Modeling and Simulation in Polymers


Book Description

Filling a gap in the literature and all set to become the standard in this field, this monograph begins with a look at computational viscoelastic fluid mechanics and studies of turbulent flows of dilute polymer solutions. It then goes on discuss simulations of nanocomposites, polymerization kinetics, computational approaches for polymers and modeling polyelectrolytes. Further sections deal with tire optimization, irreversible phenomena in polymers, the hydrodynamics of artificial and bacterial flagella as well as modeling and simulation in liquid crystals. The result is invaluable reading for polymer and theoretical chemists, chemists in industry, materials scientists and plastics technologists.