Introduction to Information Retrieval


Book Description

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.




Information Retrieval: Uncertainty and Logics


Book Description

A collection of papers proposing, developing, and implementing logical IR models. After an introductory chapter on non-classical logic as the appropriate formalism with which to build IR models, papers are divided into groups on three approaches: logical models, uncertainty models, and meta-models. Topics include preferential models of query by navigation, a logic for multimedia information retrieval, logical imaging and probabilistic information retrieval, and an axiomatic aboutness theory for information retrieval. Can be used as a text for a graduate course on information retrieval or database systems, and as a reference for researchers and practitioners in industry. Annotation copyrighted by Book News, Inc., Portland, OR




Text Data Management and Analysis


Book Description

Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic. This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.




Web Information Retrieval


Book Description

With the proliferation of huge amounts of (heterogeneous) data on the Web, the importance of information retrieval (IR) has grown considerably over the last few years. Big players in the computer industry, such as Google, Microsoft and Yahoo!, are the primary contributors of technology for fast access to Web-based information; and searching capabilities are now integrated into most information systems, ranging from business management software and customer relationship systems to social networks and mobile phone applications. Ceri and his co-authors aim at taking their readers from the foundations of modern information retrieval to the most advanced challenges of Web IR. To this end, their book is divided into three parts. The first part addresses the principles of IR and provides a systematic and compact description of basic information retrieval techniques (including binary, vector space and probabilistic models as well as natural language search processing) before focusing on its application to the Web. Part two addresses the foundational aspects of Web IR by discussing the general architecture of search engines (with a focus on the crawling and indexing processes), describing link analysis methods (specifically Page Rank and HITS), addressing recommendation and diversification, and finally presenting advertising in search (the main source of revenues for search engines). The third and final part describes advanced aspects of Web search, each chapter providing a self-contained, up-to-date survey on current Web research directions. Topics in this part include meta-search and multi-domain search, semantic search, search in the context of multimedia data, and crowd search. The book is ideally suited to courses on information retrieval, as it covers all Web-independent foundational aspects. Its presentation is self-contained and does not require prior background knowledge. It can also be used in the context of classic courses on data management, allowing the instructor to cover both structured and unstructured data in various formats. Its classroom use is facilitated by a set of slides, which can be downloaded from www.search-computing.org.













NBS Special Publication


Book Description




Library of Congress Subject Headings


Book Description