Computational Fluid Dynamics and Heat Transfer


Book Description

Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.




Numerical Simulations of Heat Transfer and Fluid Flow on a Personal Computer


Book Description

This book describes methodologies for performing numerical simulations of transport processes in heat transfer and fluid flow. The reader is guided to make the proper selection of simulation techniques and to interpret the acquired results based on the flow physics involved. Computer programs which are used to solve heat transfer and fluid flow problems are integrated into the text. Illustrative examples of thermo-fluid phenomena are provided in every chapter to enhance understanding of the subjects by offering the reader hands-on experience of numerical simulations. Most of the fundamental transport processes in heat transfer and fluid flow, e.g. heat conduction in a solid body, convection heat transfer of a fin, laminar and turbulent heat transfer and flow in a duct or tube, and boundary layers over a flat plate are covered. A strong emphasis is placed on examinations of the thermo-fluid phenomena inside a flow passage (such as tube and a channel). The book contains detailed discussions on the formulation of the boundary conditions which is often the key issue in making successful numerical simulations of the physical phenomena of interest. Simulations are carefully designed so that conventional 16-bit personal computers, such as IBM PCreg; or Apple Macintoshreg; can be used. Visualizing the simulated results in graphic form (plotting charts and line contours of physical variables) significantly enhances the reader's understanding of the important transport processes. The book is intended as an introductory text for numerical simulations of heat transfer and fluid flow phenomena. Description is simple and self-contained so that beginners can easily understand the material, yet it will also serve as a useful reference work for the practitioner. Exercise problems are supplied by which the reader can consolidate knowledge of simulation techniques described and gain further insight in the physical processes of interest. The book contains two 3frac12; inch floppy disks, each of which stores a complete set of simulation source codes discussed in the text. These programs are recorded in ASCII format and can be run either on IBM PCreg; or Macintoshreg; using QuickBasicreg;. The programs are well-documented within the text as well as in the codes themselves with a number of comment statements. This helps the reader understand the flow of program runs and, if the reader so wishes, modifying the original source codes. To facilitate prescription of the physical conditions for simulations, these programs run in a highly interactive mode. In addition, the diskettes contain a number of compiled programs which can be executed without the QuickBasicreg; program.




Numerical Heat Transfer and Fluid Flow


Book Description

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.




Numerical Simulation of Fluid Flow and Heat/Mass Transfer Processes


Book Description

Computational fluid flow is not an easy subject. Not only is the mathematical representation of physico-chemical hydrodynamics complex, but the accurate numerical solution of the resulting equations has challenged many numerate scientists and engineers over the past two decades. The modelling of physical phenomena and testing of new numerical schemes has been aided in the last 10 years or so by a number of basic fluid flow programs (MAC, TEACH, 2-E-FIX, GENMIX, etc). However, in 1981 a program (perhaps more precisely, a software product) called PHOENICS was released that was then (and still remains) arguably, the most powerful computational tool in the whole area of endeavour surrounding fluid dynamics. The aim of PHOENICS is to provide a framework for the modelling of complex processes involving fluid flow, heat transfer and chemical reactions. PHOENICS has now been is use for four years by a wide range of users across the world. It was thus perceived as useful to provide a forum for PHOENICS users to share their experiences in trying to address a wide range of problems. So it was that the First International PHOENICS Users Conference was conceived and planned for September 1985. The location, at the Dartford Campus of Thames Polytechnic, in the event, proved to be an ideal site, encouraging substantial interaction between the participants.




Heat Transfer and Fluid Flow in Minichannels and Microchannels


Book Description

&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.




Computer Simulations in Compact Heat Exchangers


Book Description

During recent years, numerical methods for solving flow and heat transfer problems have been developed to such an extent that reliable predictions of the velocity and temperature fields, associated pressure drops and heat fluxes relevant to compact heat exchangers are possible in many cases. This book shows recent advances in computer simulations in compact heat exchangers as well as describing limitations and areas where further research and development are needed.




The Numerical Simulation of Fluid Flow


Book Description

This book collects the accepted contributions to the Special Issue "The Numerical Simulation of Fluid Flow" in the Energies journal of MDPI. It is focused more on practical applications of numerical codes than in its development. It covers a wide variety of topics, from aeroacoustics to aerodynamics and flow-particles interaction.







Computational Methods for Heat and Mass Transfer


Book Description

The advent of high-speed computers has encouraged a growing demand for newly graduated engineers to possess the basic skills of computational methods for heat and mass transfer and fluid dynamics. Computational fluid dynamics and heat transfer, as well as finite element codes, are standard tools in the computer-aided design and analysis of processes.