Book Description
This book covers key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to rationalise or predict a range of properties.
Author : Kim E. Jelfs
Publisher : Royal Society of Chemistry
Page : 325 pages
File Size : 29,23 MB
Release : 2021-09-08
Category : Computers
ISBN : 1788019008
This book covers key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to rationalise or predict a range of properties.
Author : Martin A. Diaz Viera
Publisher : CRC Press
Page : 370 pages
File Size : 44,74 MB
Release : 2012-07-24
Category : Mathematics
ISBN : 0203113888
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete
Author : Zhangxin Chen
Publisher : SIAM
Page : 551 pages
File Size : 47,59 MB
Release : 2006-04-01
Category : Computers
ISBN : 0898716063
This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.
Author : Juan Carlos Moreno-Piraján
Publisher : Springer Nature
Page : 363 pages
File Size : 17,37 MB
Release : 2021-03-10
Category : Technology & Engineering
ISBN : 3030659917
This book is written in honor of Prof. Francisco Rodriguez-Reinoso, who has made significant contributions in the area of porous materials such as active carbons and graphenes. It details the preparation of porous materials, including carbonaceous, zeolitic, and siliceous materials, MOFs, aerogels, and xerogels, describing the characterization techniques and the interpretation of the results, and highlighting common errors that can occur during the process. This book subsequently presents the use of modeling based on thermodynamics to describe the materials. Lastly, it illustrates a number of current environmental protection applications in the context of both water and air.
Author : Martin A. Diaz Viera
Publisher : CRC Press
Page : 372 pages
File Size : 43,25 MB
Release : 2012-07-24
Category : Mathematics
ISBN : 041566537X
Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy’s law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. This book addresses several of these issues, treated with a variety of methodologies grouped into four parts: I Fundamental concepts II Flow and transport III Statistical and stochastic characterization IV Waves The problems analyzed in this book cover diverse length scales that range from small rock samples to field-size porous formations. They belong to the most active areas of research in porous media with applications in geosciences developed by diverse authors. This book was written for a broad audience with a prior and basic knowledge of porous media. The book is addressed to a wide readership, and it will be useful not only as an authoritative textbook for undergraduate and graduate students but also as a reference source for professionals including geoscientists, hydrogeologists, geophysicists, engineers, applied mathematicians and others working on porous media.
Author : Kim Jelfs
Publisher : Royal Society of Chemistry
Page : 280 pages
File Size : 50,90 MB
Release : 2021-08-31
Category : Technology & Engineering
ISBN : 1839163321
Computer Simulation of Porous Materials covers the key approaches in the modelling of porous materials, with a focus on how these can be used for structure prediction and to either rationalise or predict a range of properties including sorption, diffusion, mechanical, spectroscopic and catalytic. The book covers the full breadth of (micro)porous materials, from inorganic (zeolites), to organic including porous polymers and porous molecular materials, and hybrid materials (metal-organic frameworks). Through chapters focusing on techniques for specific types of applications and properties, the book outlines the challenges and opportunities in applying approaches and methods to different classes of systems, including a discussion of high-throughput screening. There is a strong forward-looking focus, to identify where increased computer power or artificial intelligence techniques such as machine learning have the potential to open up new avenues of research. Edited by a world leader in the field, this title provides a valuable resource for not only computational researchers, but also gives an overview for experimental researchers. It is presented at a level accessible to advanced undergraduates, postgraduates and researchers wishing to learn more about the topic.
Author : D.A. Nield
Publisher : Springer Science & Business Media
Page : 655 pages
File Size : 22,72 MB
Release : 2006-12-06
Category : Technology & Engineering
ISBN : 0387334319
This new edition includes nearly 1000 new references.
Author : Don Kulasiri
Publisher : BoD – Books on Demand
Page : 246 pages
File Size : 36,31 MB
Release : 2011-11-04
Category : Computers
ISBN : 9533077263
This research monograph presents a mathematical approach based on stochastic calculus which tackles the "cutting edge" in porous media science and engineering - prediction of dispersivity from covariance of hydraulic conductivity (velocity). The problem is of extreme importance for tracer analysis, for enhanced recovery by injection of miscible gases, etc. This book explains a generalised mathematical model and effective numerical methods that may highly impact the stochastic porous media hydrodynamics. The book starts with a general overview of the problem of scale dependence of the dispersion coefficient in porous media. Then a review of pertinent topics of stochastic calculus that would be useful in the modeling in the subsequent chapters is succinctly presented. The development of a generalised stochastic solute transport model for any given velocity covariance without resorting to Fickian assumptions from laboratory scale to field scale is discussed in detail. The mathematical approaches presented here may be useful for many other problems related to chemical dispersion in porous media.
Author : Mohamed F. El-Amin
Publisher : Elsevier
Page : 432 pages
File Size : 41,72 MB
Release : 2023-06-17
Category : Technology & Engineering
ISBN : 0323905129
Numerical Modeling of Nanoparticle Transport in Porous Media: MATLAB/PYTHON Approach focuses on modeling and numerical aspects of nanoparticle transport within single- and two-phase flow in porous media. The book discusses modeling development, dimensional analysis, numerical solutions and convergence analysis. Actual types of porous media have been considered, including heterogeneous, fractured, and anisotropic. Moreover, different interactions with nanoparticles are studied, such as magnetic nanoparticles, ferrofluids and polymers. Finally, several machine learning techniques are implemented to predict nanoparticle transport in porous media. This book provides a complete full reference in mathematical modeling and numerical aspects of nanoparticle transport in porous media. It is an important reference source for engineers, mathematicians, and materials scientists who are looking to increase their understanding of modeling, simulation, and analysis at the nanoscale. - Explains the major simulation models and numerical techniques used for predicting nanoscale transport phenomena - Provides MATLAB codes for most of the numerical simulation and Python codes for machine learning calculations - Uses examples and results to illustrate each model type to the reader - Assesses major application areas for each model type
Author :
Publisher : World Scientific
Page : 1495 pages
File Size : 12,2 MB
Release : 2020-10-20
Category : Science
ISBN : 9811223246
This four-volume handbook gives a state-of-the-art overview of porous materials, from synthesis and characterization and simulation all the way to manufacturing and industrial applications. The editors, coming from academia and industry, are known for their didactic skills as well as their technical expertise. Coordinating the efforts of 37 expert authors in 14 chapters, they construct the story of porous carbons, ceramics, zeolites and polymers from varied viewpoints: surface and colloidal science, materials science, chemical engineering, and energy engineering. Volumes 1 and 2 cover the fundamentals of preparation, characterisation, and simulation of porous materials. Working from the fundamentals all the way to the practicalities of industrial production processes, the subjects include hierarchical materials, in situ and operando characterisation using NMR, X-Ray scattering and tomography, state-of-the-art molecular simulations of adsorption and diffusion in crystalline nanoporous materials, as well as the emerging areas of bio-artificing and drug delivery. Volume 3 focuses on porous materials in industrial separation applications, including adsorption separation, membrane separation, and osmotic distillation. Finally, and highly relevant to tomorrow's energy challenges, Volume 4 explains the energy engineering aspects of applying porous materials in supercapacitors, fuel cells, batteries, electrolysers and sub-surface energy applications.The text contains many high-quality colourful illustrations and examples, as well as thousands of up-to-date references to peer-reviewed articles, reports and websites for further reading. This comprehensive and well-written handbook is a must-have reference for universities, research groups and companies working with porous materials.Related Link(s)