Computer Vision and Graphics


Book Description

This book constitutes the refereed proceedings of the International Conference on Computer Vision and Graphics, ICCVG 2020, held in Warsaw, Poland, in September 2020. The 20 full papers were selected from 49 submissions. The contributions cover topics such as: modelling of human visual perception; computational geometry; geometrical models of objects and scenes; illumination and reflection models and methods; image formation; image and video coding; image filtering and enhancement; biomedical image processing; biomedical graphics; colour image processing; multispectral image processing; pattern recognition in image processing; scene understanding; motion analysis, visual navigation and active vision; human motion detection and analysis; visualisation and graphical data presentation; hardware and architectures for image processing; computer-aided graphic design; 3D imaging, shading and rendering; computer animation; graphics for internet and mobile systems; virtual reality; image and video databases; digital watermarking; multimedia applications; and computer art. Due to the Corona pandemic ICCVG 2020 was held as a virtual event.




Introduction to Visual Computing


Book Description

Introduction to Visual Computing: Core Concepts in Computer Vision, Graphics, and Image Processing covers the fundamental concepts of visual computing. Whereas past books have treated these concepts within the context of specific fields such as computer graphics, computer vision or image processing, this book offers a unified view of these core concepts, thereby providing a unified treatment of computational and mathematical methods for creating, capturing, analyzing and manipulating visual data (e.g. 2D images, 3D models). Fundamentals covered in the book include convolution, Fourier transform, filters, geometric transformations, epipolar geometry, 3D reconstruction, color and the image synthesis pipeline. The book is organized in four parts. The first part provides an exposure to different kinds of visual data (e.g. 2D images, videos and 3D geometry) and the core mathematical techniques that are required for their processing (e.g. interpolation and linear regression.) The second part of the book on Image Based Visual Computing deals with several fundamental techniques to process 2D images (e.g. convolution, spectral analysis and feature detection) and corresponds to the low level retinal image processing that happens in the eye in the human visual system pathway. The next part of the book on Geometric Visual Computing deals with the fundamental techniques used to combine the geometric information from multiple eyes creating a 3D interpretation of the object and world around us (e.g. transformations, projective and epipolar geometry, and 3D reconstruction). This corresponds to the higher level processing that happens in the brain combining information from both the eyes thereby helping us to navigate through the 3D world around us. The last two parts of the book cover Radiometric Visual Computing and Visual Content Synthesis. These parts focus on the fundamental techniques for processing information arising from the interaction of light with objects around us, as well as the fundamentals of creating virtual computer generated worlds that mimic all the processing presented in the prior sections. The book is written for a 16 week long semester course and can be used for both undergraduate and graduate teaching, as well as a reference for professionals.




Computer Vision and Graphics


Book Description

This book constitutes the refereed proceedings of the International Conference on Computer Vision and Graphics, ICCVG 2018, held in Warsaw, Poland, in September 2018. The 45 full papers were selected from 117 submissions. The contributions are thematically arranged as follows: computer graphics, image quality and graphic, user interfaces, object classification and features, 3D and stereo image processing, low-level and middle-level image processing, medical image analysis, motion analysis and tracking, security and protection, pattern recognition and new concepts in classification.




Geodesic Methods in Computer Vision and Graphics


Book Description

Reviews the emerging field of geodesic methods and features the following: explanations of the mathematical foundations underlying these methods; discussion on the state of the art algorithms to compute shortest paths; review of several fields of application, including medical imaging segmentation, 3-D surface sampling and shape retrieval




Computer Vision and Image Processing


Book Description

The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.




Medical Image Analysis


Book Description

Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing




Computer Vision for Visual Effects


Book Description

This book explores the fundamental computer vision principles and state-of-the-art algorithms used to create cutting-edge visual effects for movies and television. It describes classical computer vision algorithms and recent developments, features more than 200 original images, and contains in-depth interviews with Hollywood visual effects artists that tie the mathematical concepts to real-world filmmaking.




Image Processing for Computer Graphics


Book Description

The focus of this book is on providing a thorough treatment of image processing with an emphasis on those aspects most used in computer graphics. Throughout, the authors concentrate on describing and analysing the underlying concepts rather than on presenting algorithms or pseudocode. As befits a modern introduction to this topic, a healthy balance is struck between discussing the underlying mathematics of the subject and the main topics covered: signal processing, data discretization, the theory of colour and different colour systems, operations in images, dithering and half-toning, warping and morphing, and image processing.




Computational Symmetry in Computer Vision and Computer Graphics


Book Description

In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting impact. Likewise, a computational treatment of symmetry and group theory (the ultimate mathematical formalization of symmetry) has the potential to play an important role in computational sciences. Though the term Computational Symmetry was formally defined a decade ago by the first author, referring to algorithmic treatment of symmetries, seeking symmetry from digital data has been attempted for over four decades. Computational symmetry on real world data turns out to be challenging enough that, after decades of effort, a fully automated symmetry-savvy system remains elusive for real world applications. The recent resurging interests in computational symmetry for computer vision and computer graphics applications have shown promising results. Recognizing the fundamental relevance and potential power that computational symmetry affords, we offer this survey to the computer vision and computer graphics communities. This survey provides a succinct summary of the relevant mathematical theory, a historic perspective of some important symmetry-related ideas, a partial yet timely report on the state of the arts symmetry detection algorithms along with its first quantitative benchmark, a diverse set of real world applications, suggestions for future directions and a comprehensive reference list.




Algorithms for Image Processing and Computer Vision


Book Description

A cookbook of the hottest new algorithms and cutting-edge techniques in image processing and computer vision This amazing book/CD package puts the power of all the hottest new image processing techniques and algorithms in your hands. Based on J. R. Parker's exhaustive survey of Internet newsgroups worldwide, Algorithms for Image Processing and Computer Vision answers the most frequently asked questions with practical solutions. Parker uses dozens of real-life examples taken from fields such as robotics, space exploration, forensic analysis, cartography, and medical diagnostics, to clearly describe the latest techniques for morphing, advanced edge detection, wavelets, texture classification, image restoration, symbol recognition, and genetic algorithms, to name just a few. And, best of all, he implements each method covered in C and provides all the source code on the CD. For the first time, you're rescued from the hours of mind-numbing mathematical calculations it would ordinarily take to program these state-of-the-art image processing capabilities into software. At last, nonmathematicians get all the shortcuts they need for sophisticated image recognition and processing applications. On the CD-ROM you'll find: * Complete code for examples in the book * A gallery of images illustrating the results of advanced techniques * A free GNU compiler that lets you run source code on any platform * A system for restoring damaged or blurred images * A genetic algorithms package