Papers of John Von Neumann on Computing and Computer Theory
Author : John Von Neumann
Publisher :
Page : 656 pages
File Size : 49,94 MB
Release : 1987
Category : Electronic digital computers
ISBN :
Author : John Von Neumann
Publisher :
Page : 656 pages
File Size : 49,94 MB
Release : 1987
Category : Electronic digital computers
ISBN :
Author : Daniel I. A. Cohen
Publisher : John Wiley & Sons
Page : 661 pages
File Size : 40,3 MB
Release : 1996-10-25
Category : Computers
ISBN : 0471137723
This text strikes a good balance between rigor and an intuitive approach to computer theory. Covers all the topics needed by computer scientists with a sometimes humorous approach that reviewers found "refreshing". It is easy to read and the coverage of mathematics is fairly simple so readers do not have to worry about proving theorems.
Author : Daniel I. A. Cohen
Publisher :
Page : 826 pages
File Size : 46,85 MB
Release : 1986-01-17
Category : Computers
ISBN :
An easy-to-comprehend text for required undergraduate courses in computer theory, this work thoroughly covers the three fundamental areas of computer theory--formal languages, automata theory, and Turing machines. It is an imaginative and pedagogically strong attempt to remove the unnecessary mathematical complications associated with the study of these subjects. The author substitutes graphic representation for symbolic proofs, allowing students with poor mathematical background to easily follow each step. Includes a large selection of well thought out problems at the end of each chapter.
Author : Benjamin C. Pierce
Publisher : MIT Press
Page : 117 pages
File Size : 31,41 MB
Release : 1991-08-07
Category : Computers
ISBN : 0262326450
Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Category theory is a branch of pure mathematics that is becoming an increasingly important tool in theoretical computer science, especially in programming language semantics, domain theory, and concurrency, where it is already a standard language of discourse. Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts. Contents Tutorial • Applications • Further Reading
Author : Kenichi Morita
Publisher : Springer
Page : 463 pages
File Size : 15,58 MB
Release : 2017-11-06
Category : Computers
ISBN : 4431566066
This book describes reversible computing from the standpoint of the theory of automata and computing. It investigates how reversibility can be effectively utilized in computing. A reversible computing system is a “backward deterministic” system such that every state of the system has at most one predecessor. Although its definition is very simple, it is closely related to physical reversibility, one of the fundamental microscopic laws of Nature. Authored by the leading scientist on the subject, this book serves as a valuable reference work for anyone working in reversible computation or in automata theory in general. This work deals with various reversible computing models at several different levels, which range from the microscopic to the macroscopic, and aims to clarify how computation can be carried out efficiently and elegantly in these reversible computing models. Because the construction methods are often unique and different from those in the traditional methods, these computing models as well as the design methods provide new insights for future computing systems. Organized bottom-up, the book starts with the lowest scale of reversible logic elements and circuits made from them. This is followed by reversible Turing machines, the most basic computationally universal machines, and some other types of reversible automata such as reversible multi-head automata and reversible counter machines. The text concludes with reversible cellular automata for massively parallel spatiotemporal computation. In order to help the reader have a clear understanding of each model, the presentations of all different models follow a similar pattern: the model is given in full detail, a short informal discussion is held on the role of different elements of the model, and an example with illustrations follows each model.
Author : Song Y. Yan
Publisher : Springer Science & Business Media
Page : 454 pages
File Size : 15,84 MB
Release : 2013-11-11
Category : Computers
ISBN : 366204773X
This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.
Author : Domenico Cantone
Publisher : Springer Science & Business Media
Page : 440 pages
File Size : 15,13 MB
Release : 2001-06-26
Category : Computers
ISBN : 9780387951973
"Set Theory for Computing" provides a comprehensive account of set-oriented symbolic manipulation methods suitable for automated reasoning. Its main objective is twofold: 1) to provide a flexible formalization for a variety of set languages, and 2) to clarify the semantics of set constructs firmly established in modern specification languages and in the programming practice. Topics include: semantic unification, decision algorithms, modal logics, declarative programming, tableau-based proof techniques, and theory-based theorem proving. The style of presentation is self-contained, rigorous and accurate. Some familiarity with symbolic logic is helpful but not a requirement. This book is a useful resource for all advanced students, professionals, and researchers in computing sciences, artificial intelligence, automated reasoning, logic, and computational mathematics. It will serve to complement their intuitive understanding of set concepts with the ability to master them by symbolic and logically based algorithmic methods and deductive techniques.
Author : John MacCormick
Publisher : Princeton University Press
Page : 404 pages
File Size : 18,89 MB
Release : 2018-05-01
Category : Computers
ISBN : 0691170665
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
Author : Dan C. Marinescu
Publisher : Newnes
Page : 415 pages
File Size : 14,77 MB
Release : 2013-05-30
Category : Computers
ISBN : 012404641X
Cloud Computing: Theory and Practice provides students and IT professionals with an in-depth analysis of the cloud from the ground up. Beginning with a discussion of parallel computing and architectures and distributed systems, the book turns to contemporary cloud infrastructures, how they are being deployed at leading companies such as Amazon, Google and Apple, and how they can be applied in fields such as healthcare, banking and science. The volume also examines how to successfully deploy a cloud application across the enterprise using virtualization, resource management and the right amount of networking support, including content delivery networks and storage area networks. Developers will find a complete introduction to application development provided on a variety of platforms. - Learn about recent trends in cloud computing in critical areas such as: resource management, security, energy consumption, ethics, and complex systems - Get a detailed hands-on set of practical recipes that help simplify the deployment of a cloud based system for practical use of computing clouds along with an in-depth discussion of several projects - Understand the evolution of cloud computing and why the cloud computing paradigm has a better chance to succeed than previous efforts in large-scale distributed computing
Author : Thierry Scheurer
Publisher : Addison-Wesley Longman
Page : 700 pages
File Size : 23,31 MB
Release : 1994
Category : Computers
ISBN :
Written for professionals learning the field of discrete mathematics, this book provides the necessary foundations of computer science without requiring excessive mathematical prerequisites. Using a balanced approach of theory and examples, software engineers will find it a refreshing treatment of applications in programming.