Chemistry by Computer


Book Description

Computers have been applied to problems in chemistry and the chemical sciences since the dawn of the computer age; however, it is only in the past ten or fifteen years that we have seen the emergence of computational chemistry as a field of research in its own right. Its practitioners, computational chemists, are neither chemists who dabble in computing nor programmers who have an interest in chemistry, but computa tional scientists whose aim is to solve a wide range of chemical problems using modern computing machines. This book gives a broad overview of the methods and techniques employed by the computational chemist and of the wide range of problems to which he is applying them. It is divided into three parts. The first part records the basics of chemistry and of computational science that are essential to an understanding of the methods of computational chemistry. These methods are described in the second part of the book. In the third part, a survey is given of some areas in which the techniques of computational chemistry are being applied. As a result of the limited space available in a single volume, the areas covered are necessarily selective. Nevertheless, a sufficiently wide range of applications are described to provide the reader with a balanced overview of the many problems being attacked by computational studies in chemistry.




Computers in Chemistry


Book Description

Computers have become an integral part of chemistry. Virtually all modern scientific instrumentation contains some form of computer and, indeed, the operation of many instruments has become so complex that it is impossible without some degree of computer control. It is vital for the modern student of chemistry to have at least a basic knowledge of computers, and the deeper that knowledge is, the better use will be made of the techniques available. Computers in Chemistry provides an excellent overview of computers and their use in chemistry, giving the student an insight into both the workings of a computer and the ways in which computer facilities can be effectively applied in the study of chemistry today. Topics covered include programming hardware, laboratory software, interfacing computers with experiments and presenting computed information.




Computer Chemistry


Book Description

Computer Chemistry illustrates the methods and philosophies of how a computer can be instructed to "understand" chemical facts, formulas and rules. It focuses on discussions of all of the major sections in both theoretical framework and practical application through examples. It includes the Synthesis Design Systems for the simulation of chemical reactions, the Structure Elucidation Systems for the interpretation of spectral data, the Molecular Modelling Systems for the visualization of chemical structures and the calculation of physico-chemical parameters.




Computers in Analytical Chemistry


Book Description

This text is primarily intended for readers who have some background in chemistry and who wish to find out more about the ways in which computers and electronics are influencing the techniques of observing chemical systems, the acquisition of data, its storage, and its transmission from one location to another. Many important concepts - such as interfacing, data collection, data bases, information services and computer networks - are covered in an easily assimilated and comprehensive way.




Computers and Their Applications to Chemistry


Book Description

Introduces the fundamentals of BASIC, FORTRAN and C++ language using the concepts of Chemistry. This book includes an account of various statements input/output, format, control (if - then - else, go to, do loops and more has been illustrated by various examples.




Tools For Chemical Product Design


Book Description

Tools for Chemical Product Design: From Consumer Products to Biomedicine describes the challenges involved in systematic product design across a variety of industries and provides a comprehensive overview of mathematical tools aimed at the design of chemical products, from molecular design to customer products. Chemical product design has become increasingly important over the past decade and includes a wide range of sectors including gasoline additives and blends in the petroleum industry, active ingredients and excipients in the pharmaceutical industry, and a variety of consumer products and specialty chemicals. Traditionally, such products have been designed through trial and error methods, which not only are time-consuming, but more importantly only provide limited knowledge that can be translated into next generation products. - Features an impressive collection of contributions from leading researchers in the field - Presents the latest tools available across a variety of industries - Describes the challenges involved in systematic product design as well as the latest methods for solving such problems - Covers a wide range of sectors including gasoline additives and blends in the petroleum industry, active ingredients and excipients in the pharmaceutical industry, and a variety of consumer products and specialty chemicals




Applied Parallel Computing. Computations in Physics, Chemistry and Engineering Science


Book Description

This book presents the refereed proceedings of the Second International Workshop on Applied Parallel Computing in Physics, Chemistry and Engineering Science, PARA'95, held in Lyngby, Denmark, in August 1995. The 60 revised full papers included have been contributed by physicists, chemists, and engineers, as well as by computer scientists and mathematicians, and document the successful cooperation of different scientific communities in the booming area of computational science and high performance computing. Many widely-used numerical algorithms and their applications on parallel computers are treated in detail.







Theory and Applications of Computational Chemistry


Book Description

Computational chemistry is a means of applying theoretical ideas using computers and a set of techniques for investigating chemical problems within which common questions vary from molecular geometry to the physical properties of substances. Theory and Applications of Computational Chemistry: The First Forty Years is a collection of articles on the emergence of computational chemistry. It shows the enormous breadth of theoretical and computational chemistry today and establishes how theory and computation have become increasingly linked as methodologies and technologies have advanced. Written by the pioneers in the field, the book presents historical perspectives and insights into the subject, and addresses new and current methods, as well as problems and applications in theoretical and computational chemistry. Easy to read and packed with personal insights, technical and classical information, this book provides the perfect introduction for graduate students beginning research in this area. It also provides very readable and useful reviews for theoretical chemists.* Written by well-known leading experts * Combines history, personal accounts, and theory to explain much of the field of theoretical and compuational chemistry* Is the perfect introduction to the field




Reviews in Computational Chemistry, Volume 17


Book Description

Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry."—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY