Concepts of Probability Theory


Book Description

Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.




Probability Concepts and Theory for Engineers


Book Description

A thorough introduction to the fundamentals of probability theory This book offers a detailed explanation of the basic models and mathematical principles used in applying probability theory to practical problems. It gives the reader a solid foundation for formulating and solving many kinds of probability problems for deriving additional results that may be needed in order to address more challenging questions, as well as for proceeding with the study of a wide variety of more advanced topics. Great care is devoted to a clear and detailed development of the ‘conceptual model' which serves as the bridge between any real-world situation and its analysis by means of the mathematics of probability. Throughout the book, this conceptual model is not lost sight of. Random variables in one and several dimensions are treated in detail, including singular random variables, transformations, characteristic functions, and sequences. Also included are special topics not covered in many probability texts, such as fuzziness, entropy, spherically symmetric random variables, and copulas. Some special features of the book are: a unique step-by-step presentation organized into 86 topical Sections, which are grouped into six Parts over 200 diagrams augment and illustrate the text, which help speed the reader's comprehension of the material short answer review questions following each Section, with an answer table provided, strengthen the reader's detailed grasp of the material contained in the Section problems associated with each Section provide practice in applying the principles discussed, and in some cases extend the scope of that material an online separate solutions manual is available for course tutors. The various features of this textbook make it possible for engineering students to become well versed in the ‘machinery' of probability theory. They also make the book a useful resource for self-study by practicing engineers and researchers who need a more thorough grasp of particular topics.




An Elementary Introduction to the Theory of Probability


Book Description

This compact volume equips the reader with all the facts and principles essential to a fundamental understanding of the theory of probability. It is an introduction, no more: throughout the book the authors discuss the theory of probability for situations having only a finite number of possibilities, and the mathematics employed is held to the elementary level. But within its purposely restricted range it is extremely thorough, well organized, and absolutely authoritative. It is the only English translation of the latest revised Russian edition; and it is the only current translation on the market that has been checked and approved by Gnedenko himself. After explaining in simple terms the meaning of the concept of probability and the means by which an event is declared to be in practice, impossible, the authors take up the processes involved in the calculation of probabilities. They survey the rules for addition and multiplication of probabilities, the concept of conditional probability, the formula for total probability, Bayes's formula, Bernoulli's scheme and theorem, the concepts of random variables, insufficiency of the mean value for the characterization of a random variable, methods of measuring the variance of a random variable, theorems on the standard deviation, the Chebyshev inequality, normal laws of distribution, distribution curves, properties of normal distribution curves, and related topics. The book is unique in that, while there are several high school and college textbooks available on this subject, there is no other popular treatment for the layman that contains quite the same material presented with the same degree of clarity and authenticity. Anyone who desires a fundamental grasp of this increasingly important subject cannot do better than to start with this book. New preface for Dover edition by B. V. Gnedenko.




Theory of Probability


Book Description




Basic Concepts of Probability and Statistics


Book Description

This book provides a mathematically rigorous introduction to the fundamental ideas of modern statistics for readers without a calculus background.




Probability


Book Description

When a doctor tells you theres a one percent chance that an operation will result in your death, or a scientist claims that his theory is probably true, what exactly does that mean? Understanding probability is clearly very important, if we are to make good theoretical and practical choices. In this engaging and highly accessible introduction to the philosophy of probability, Darrell Rowbottom takes the reader on a journey through all the major interpretations of probability, with reference to real-world situations. In lucid prose, he explores the many fallacies of probabilistic reasoning, such as the gamblers fallacy and the inverse fallacy, and shows how we can avoid falling into these traps by using the interpretations presented. He also illustrates the relevance of the interpretation of probability across disciplinary boundaries, by examining which interpretations of probability are appropriate in diverse areas such as quantum mechanics, game theory, and genetics. Using entertaining dialogues to draw out the key issues at stake, this unique book will appeal to students and scholars across philosophy, the social sciences, and the natural sciences.




Basic Concepts of Probability and Statistics in the Law


Book Description

When as a practicing lawyer I published my ?rst article on statistical evidence in 1966, the editors of the Harvard Law Review told me that a mathematical equa- 1 tion had never before appeared in the review. This hardly seems possible - but if they meant a serious mathematical equation, perhaps they were right. Today all that has changed in legal academia. Whole journals are devoted to scienti?c methods in law or empirical studies of legal institutions. Much of this work involves statistics. Columbia Law School, where I teach, has a professor of law and epidemiology and other law schools have similar “law and” professorships. Many offer courses on statistics (I teach one) or, more broadly, on law and social science. The same is true of practice. Where there are data to parse in a litigation, stat- ticians and other experts using statistical tools now frequently testify. And judges must understand them. In 1993, in its landmark Daubert decision, the Supreme Court commanded federal judges to penetrate scienti?c evidence and ?nd it “re- 2 liable” before allowing it in evidence. It is emblematic of the rise of statistics in the law that the evidence at issue in that much-cited case included a series of epidemiological studies. The Supreme Court’s new requirement made the Federal Judicial Center’s Reference Manual on Scienti?c Evidence, which appeared at about the same time, a best seller. It has several important chapters on statistics.




The Concept of Probability in the Mathematical Representation of Reality


Book Description

The first English translation of Hans Reichenbach's lucid doctoral thesis sheds new light on how Kant's Critique of Pure Reason was understood in some quarters at the time. The source of several themes in his still influential The Direction of Time, the thesis shows Reichenbach's early focus on the interdependence of physics, probability, and epistemology.




Probability Theory


Book Description

Aimed primarily at graduate students and researchers, this text is a comprehensive course in modern probability theory and its measure-theoretical foundations. It covers a wide variety of topics, many of which are not usually found in introductory textbooks. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in the world of probability theory. In addition, plenty of figures, computer simulations, biographic details of key mathematicians, and a wealth of examples support and enliven the presentation.




Probability Theory


Book Description

This comprehensive presentation of the basic concepts of probability theory examines both classical and modern methods. The treatment emphasizes the relationship between probability theory and mathematical analysis, and it stresses applications to statistics as well as to analysis. Topics include: • The laws of large numbers • Distribution and characteristic functions • The central limit problem • Dependence • Random variables taking values in a normed linear space Each chapter features worked examples in addition to problems, and bibliographical references to supplementary reading material enhance the text. For advanced undergraduates and graduate students in mathematics.