Stein Manifolds and Holomorphic Mappings


Book Description

This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups.




Hyperbolic Complex Spaces


Book Description

In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.




Complex Analysis on Infinite Dimensional Spaces


Book Description

Infinite dimensional holomorphy is the study of holomorphic or analytic func tions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself ini tially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suit able material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book.




Real Submanifolds in Complex Space and Their Mappings (PMS-47)


Book Description

This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.




The Chern Symposium 1979


Book Description

This volume attests to the vitality of differential geometry as it probes deeper into its internal structure and explores ever widening connections with other subjects in mathematics and physics. To most of us Professor S. S. Chern is modern differential geometry, and we, his students, are grateful to him for leading us to this fertile landscape. The aims of the symposium were to review recent developments in geometry and to expose and explore new areas of research. It was our way of honoring Professor Chern upon the occasion of his official retirement as Professor of Mathematics at the University of California. This book is a record of the scientific events of the symposium and reflects Professor Chern's wide interest and influence. The conference also reflected Professor Chern's personality. It was a serious occasion, active yet relaxed, mixed with gentleness and good humor. We wish him good health, a long life, happiness, and a continuation of his extraordinarily deep and original contributions to mathematics. I. M. Singer Contents Real and Complex Geometry in Four Dimensions M. F. ATIYAH. . . . . . . . . . . . . Equivariant Morse Theory and the Yang-Mills Equation on Riemann Surfaces RAOUL BaTT .. 11 Isometric Families of Kahler Structures EUGENIO CALABI. . 23 Two Applications of Algebraic Geometry to Entire Holomorphic Mappings MARK GREEN AND PHILLIP GRIFFITHS. • . . . • . . 41 The Canonical Map for Certain Hilbert Modular Surfaces F. HIRZEBRUCH . . . . . • . . . . . . . . . 75 Tight Embeddings and Maps. Submanifolds of Geometrical Class Three in EN NICOLAAS H. KUIPER .




Holomorphy and Calculus in Normed SPates


Book Description

This book presents a systematic introduction to the theory of holomorphic mappings in normed spaces which has been scattered throughout the literature. It gives the necessary, elementary background for all branches of modern mathematics involving differential calculus in higher dimensional spaces.




Multiplication Operators on the Bergman Space


Book Description

This book deals with various aspects of commutants and reducing subspaces of multiplication operators on the Bergman space, along with relevant von Neumann algebras generated by these operators, which have been the focus of considerable attention from the authors and other experts in recent years. The book reviews past developments and offers insights into cutting-edge developments in the study of multiplication operators. It also provides commentary and comparisons to stimulate research in this area.




Proceedings of the Conference on Complex Analysis


Book Description

This volume contains the articles contributed to the Minnesota Con ference on Complex Analysis (COCA). The Conference was held March 16-21, 1964, at the University of Minnesota, under the sponsorship of the U. S. Air Force Office of Scientific Research with thirty-one invited participants attending. Of these, nineteen presented their papers in person in the form of one-hour lectures. In addition, this volume con tains papers contributed by other attending participants as well as by participants who, after having planned to attend, were unable to do so. The list of particip ants, as well as the contributions to these Proceed ings, clearly do not represent a complete coverage of the activities in all fields of complex analysis. It is hoped, however, that these limitations stemming from the partly deliberate selections will allow a fairly com prehensive account of the current research in some of those areas of complex analysis that, in the editors' belief, have rapidly developed during the past decade and may remain as active in the foreseeable future as they are at the present time. In conclusion, the editors wish to thank, first of all, the participants and contributors to these Proceedings for their enthusiastic cooperation and encouragement. Our thanks are due also to the University of Min nesota, for offering the physical facilities for the Conference, and to Springer-Verlag for publishing these proceedings.




The Convenient Setting of Global Analysis


Book Description

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.




Numerical Range of Holomorphic Mappings and Applications


Book Description

This book describes recent developments as well as some classical results regarding holomorphic mappings. The book starts with a brief survey of the theory of semigroups of linear operators including the Hille-Yosida and the Lumer-Phillips theorems. The numerical range and the spectrum of closed densely defined linear operators are then discussed in more detail and an overview of ergodic theory is presented. The analytic extension of semigroups of linear operators is also discussed. The recent study of the numerical range of composition operators on the unit disk is mentioned. Then, the basic notions and facts in infinite dimensional holomorphy and hyperbolic geometry in Banach and Hilbert spaces are presented, L. A. Harris' theory of the numerical range of holomorphic mappings is generalized, and the main properties of the so-called quasi-dissipative mappings and their growth estimates are studied. In addition, geometric and quantitative analytic aspects of fixed point theory are discussed. A special chapter is devoted to applications of the numerical range to diverse geometric and analytic problems.