Concise Chemical Thermodynamics, 2nd Edition


Book Description

The first edition of Concise Chemical Thermodynamics proved to be a very popular introduction to a subject many undergraduate students perceive as a difficult topic, because it presented thermodynamics with practical chemical examples in a way that used little mathematics. In this second edition the text has been carefully revised to ensure the same approach is maintained. Students are led to an understanding of Gibbs free energy early on, and the concept is demonstrated in several different fields. The book includes discussions of experimental equilibrium data, an introduction to electrochemistry, a brief survey of Ellingham diagrams, and a treatment of entropy without reference to the Carnot cycle. A new chapter on computer-based methods in thermodynamics has been added to reflect current technological trends and practices. Thermodynamic data has been revised in light of information provided by the work of the Scientific Group Thermodata Europe, to ensure that the symbols and units reflect the latest IUPAC rules. In addition, the problems and examples have been updated, replaced, and amplified to reflect current understanding and concerns. Undergraduate students of chemistry will find this an ideal introduction to chemical thermodynamics.




Concise Chemical Thermodynamics


Book Description

The first two editions of Concise Chemical Thermodynamics proved to be a very popular introduction to a subject many undergraduate students perceive to be difficult due to the underlying mathematics. With its concise explanations and clear examples, the text has for the past 40 years clarified for countless students one of the most complicated bran




Concise Chemical Thermodynamics, 2nd Edition


Book Description

The first edition of Concise Chemical Thermodynamics proved to be a very popular introduction to a subject many undergraduate students perceive as a difficult topic, because it presented thermodynamics with practical chemical examples in a way that used little mathematics. In this second edition the text has been carefully revised to ensure the same approach is maintained. Students are led to an understanding of Gibbs free energy early on, and the concept is demonstrated in several different fields. The book includes discussions of experimental equilibrium data, an introduction to electrochemistry, a brief survey of Ellingham diagrams, and a treatment of entropy without reference to the Carnot cycle. A new chapter on computer-based methods in thermodynamics has been added to reflect current technological trends and practices. Thermodynamic data has been revised in light of information provided by the work of the Scientific Group Thermodata Europe, to ensure that the symbols and units reflect the latest IUPAC rules. In addition, the problems and examples have been updated, replaced, and amplified to reflect current understanding and concerns. Undergraduate students of chemistry will find this an ideal introduction to chemical thermodynamics.




Chemical Thermodynamics for Process Simulation


Book Description

The only textbook that applies thermodynamics to real-world process engineering problems This must-read for advanced students and professionals alike is the first book to demonstrate how chemical thermodynamics work in the real world by applying them to actual engineering examples. It also discusses the advantages and disadvantages of the particular models and procedures, and explains the most important models that are applied in process industry. All the topics are illustrated with examples that are closely related to practical process simulation problems. At the end of each chapter, additional calculation examples are given to enable readers to extend their comprehension. Chemical Thermodynamics for Process Simulation instructs on the behavior of fluids for pure fluids, describing the main types of equations of state and their abilities. It discusses the various quantities of interest in process simulation, their correlation, and prediction in detail. Chapters look at the important terms for the description of the thermodynamics of mixtures; the most important models and routes for phase equilibrium calculation; models which are applicable to a wide variety of non-electrolyte systems; membrane processes; polymer thermodynamics; enthalpy of reaction; chemical equilibria, and more. -Explains thermodynamic fundamentals used in process simulation with solved examples -Includes new chapters about modern measurement techniques, retrograde condensation, and simultaneous description of chemical equilibrium -Comprises numerous solved examples, which simplify the understanding of the often complex calculation procedures, and discusses advantages and disadvantages of models and procedures -Includes estimation methods for thermophysical properties and phase equilibria thermodynamics of alternative separation processes -Supplemented with MathCAD-sheets and DDBST programs for readers to reproduce the examples Chemical Thermodynamics for Process Simulation is an ideal resource for those working in the fields of process development, process synthesis, or process optimization, and an excellent book for students in the engineering sciences.







Fundamentals of Chemical Engineering Thermodynamics


Book Description

Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.




Concise Physical Chemistry


Book Description

This book is a physical chemistry textbook that presents the essentials of physical chemistry as a logical sequence from its most modest beginning to contemporary research topics. Many books currently on the market focus on the problem sets with a cursory treatment of the conceptual background and theoretical material, whereas this book is concerned only with the conceptual development of the subject. Comprised of 19 chapters, the book will address ideal gas laws, real gases, the thermodynamics of simple systems, thermochemistry, entropy and the second law, the Gibbs free energy, equilibrium, statistical approaches to thermodynamics, the phase rule, chemical kinetics, liquids and solids, solution chemistry, conductivity, electrochemical cells, atomic theory, wave mechanics of simple systems, molecular orbital theory, experimental determination of molecular structure, and photochemistry and the theory of chemical kinetics.




A TEXTBOOK OF CHEMICAL ENGINEERING THERMODYNAMICS


Book Description

Designed as an undergraduate-level textbook in Chemical Engineering, this student-friendly, thoroughly class-room tested book, now in its second edition, continues to provide an in-depth analysis of chemical engineering thermodynamics. The book has been so organized that it gives comprehensive coverage of basic concepts and applications of the laws of thermodynamics in the initial chapters, while the later chapters focus at length on important areas of study falling under the realm of chemical thermodynamics. The reader is thus introduced to a thorough analysis of the fundamental laws of thermodynamics as well as their applications to practical situations. This is followed by a detailed discussion on relationships among thermodynamic properties and an exhaustive treatment on the thermodynamic properties of solutions. The role of phase equilibrium thermodynamics in design, analysis, and operation of chemical separation methods is also deftly dealt with. Finally, the chemical reaction equilibria are skillfully explained. Besides numerous illustrations, the book contains over 200 worked examples, over 400 exercise problems (all with answers) and several objective-type questions, which enable students to gain an in-depth understanding of the concepts and theory discussed. The book will also be a useful text for students pursuing courses in chemical engineering-related branches such as polymer engineering, petroleum engineering, and safety and environmental engineering. New to This Edition • More Example Problems and Exercise Questions in each chapter • Updated section on Vapour–Liquid Equilibrium in Chapter 8 to highlight the significance of equations of state approach • GATE Questions up to 2012 with answers




Commonly Asked Questions in Thermodynamics


Book Description

CRC Press is pleased to introduce the new edition of Commonly Asked Questions in Thermodynamics, an indispensable resource for those in modern science and engineering disciplines from molecular science, engineering and biotechnology to astrophysics. Fully updated throughout, this edition features two new chapters focused on energy utilization and biological systems. This edition begins by setting out the fundamentals of thermodynamics, including its basic laws and overarching principles. It provides explanations of those principles in an organized manner, using questions that arise frequently from undergraduates in the classroom as the stimulus. These early chapters explore the language of thermodynamics; the first and second laws; statistical mechanical theory; measurement of thermodynamic quantities and their relationships; phase behavior in single and multicomponent systems; electrochemistry; and chemical and biochemical reaction equilibria. The later chapters explore applications of these fundamentals to a diverse set of subjects including power generation (with and without fossil fuels) for transport, industrial and domestic use; heating; decarbonization technologies; energy storage; refrigeration; environmental pollution; and biotechnology. Data sources for the properties needed to complete thermodynamic evaluations of many processes are included. The text is designed for readers to dip into to find an answer to a specific question where thermodynamics can provide some, if not all, of the answers, whether in the context of an undergraduate course or not. Thus its readership extends beyond conventional technical undergraduates to practicing engineers and also to the interested lay person who seeks to understand the discourse that surrounds the choice of particular technological solutions to current and future energy and material production problems.




Smithells Metals Reference Book


Book Description

Smithells is the only single volume work which provides data on all key apsects of metallic materials.Smithells has been in continuous publication for over 50 years. This 8th Edition represents a major revision.Four new chapters have been added for this edition. these focus on; * Non conventional and emerging materials - metallic foams, amorphous metals (including bulk metallic glasses), structural intermetallic compounds and micr/nano-scale materials. * Techniques for the modelling and simulation of metallic materials. * Supporting technologies for the processing of metals and alloys.* An Extensive bibliography of selected sources of further metallurgical information, including books, journals, conference series, professional societies, metallurgical databases and specialist search tools.* One of the best known and most trusted sources of reference since its first publication more than 50 years ago* The only single volume containing all the data needed by researchers and professional metallurgists* Fully updated to the latest revisions of international standards