Concrete : Microstructure, Properties, and Materials


Book Description

This textbook presents the art and science of concrete in a simple, clear, hands-on manner, focusing on the following: Cement and concrete are predicted to be the premier building material of the 21st Century; Includes unique diagrams, photographs, and summary tables; Updated to include new chapters on non-destructive methods for concrete; future challenges in concrete technology; an increased number of examples of concrete applications; and new developments in durability.




Concrete Microstructure


Book Description

Durability of concrete in highway systems is a problem of national concern. In order to better understand the mechanisms which intrinsically control durability in highway concrete, it is necessary to define and understand those factors which impact concrete microstructure which is a consequence of both its formulation and the processes taking place during mixing, placing and curing. This report documents an investigation of those variables which control cement hydration and consequent microstructural development.




Concrete: Microstructure, Properties, and Materials


Book Description

THE MOST COMPREHENSIVE AND CURRENT GUIDE TO THE PROPERTIES, BEHAVIOR, AND TECHNOLOGY OF CONCRETE This thoroughly updated edition contains new information on: Recently built construction projects worldwide Shrinkage-reducing admixtures Self-consolidating concrete, pervious concrete, internal curing, and other cutting-edge innovations Modeling of ice formation and alkali-aggregate reaction in concrete Environmental impact of concrete Each chapter begins with a preview of the contents and ends with a self-test and a guide for further reading. More than 300 drawings and photographs illustrate the topics discussed in this definitive text on concrete. Comprehensive coverage includes: Microstructure of concrete Strength Dimensional stability Durability Hydraulic cements Aggregates Admixtures Proportioning concrete mixtures Concrete at early age Nondestructive methods Progress in concrete technology Advances in concrete mechanics Global warming and concrete in the future







Concrete


Book Description

The most comprehensive and current guide to the properties, behavior, and technology of concrete.- This thoroughly updated edition contains new information on: Recently built construction projects worldwide; Shrinkage-reducing admixtures; Self-consolidating concrete, pervious concrete, internal curing, and other cutting-edge innovations; Modeling of ice formation and alkali-aggregate reaction in concrete; Environmental impact of concrete. - Each chapter begins with a preview of the contents and ends with a self-test and a guide for further reading. More than 300 drawings and photographs illustrate the topics discussed in this definitive text on concrete.




Modelling of Concrete Performance


Book Description

The intial defects induced at early age of concrete hardening: thermal strains, shrinkage, creep and the associated risks of cracking are one of the governing factors for long-term performance of concrete. Proposing a simplified but intergrated scenario of concrete life cycle simulation method, this book examines and explains the vast amount of experimental observations related to hardening concrete using a common set of physical laws. The methods used focus on the three primary processes common to the development of all cementitious materials: hydration, moisture transport and structure formation. The authors describe an intergrated theoretical and computational platform from which to examine and assess the quality and structural durability of concrete at an early age. This represents a new approach to the problem of evaluating durability performance and presents a practical methodology for researchers and practitioners in the field of concrete technology. The proposed scheme may be used in practical computational simulation methods, with the relevant software available on the Internet, and is a valuable guide to those engaged in concrete design.




A Practical Guide to Microstructural Analysis of Cementitious Materials


Book Description

A Practical Guide from Top-Level Industry Scientists As advanced teaching and training in the development of cementitious materials increase, the need has emerged for an up-to-date practical guide to the field suitable for graduate students and junior and general practitioners. Get the Best Use of Different Techniques and Interpretations of the Results This edited volume provides the cement science community with a state-of-the-art overview of analytical techniques used in cement chemistry to study the hydration and microstructure of cements. Each chapter focuses on a specific technique, not only describing the basic principles behind the technique, but also providing essential, practical details on its application to the study of cement hydration. Each chapter sets out present best practice, and draws attention to the limitations and potential experimental pitfalls of the technique. Databases that supply examples and that support the analysis and interpretation of the experimental results strengthen a very valuable ready reference. Utilizing the day-to-day experience of practical experts in the field, this book: Covers sample preparation issues Discusses commonly used techniques for identifying and quantifying the phases making up cementitious materials (X-ray diffraction and thermogravimetric analysis) Presents good practice oncalorimetry and chemical shrinkage methods for studying cement hydration kinetics Examines two different applications of nuclear magnetic resonance (solid state NMR and proton relaxometry) Takes a look at electron microscopy, the preeminent microstructural characterization technique for cementitious materials Explains how to use and interpret mercury intrusion porosimetry Details techniques for powder characterization of cementitious materials Outlines the practical application of phase diagrams for hydrated cements Avoid common pitfalls by using A Practical Guide to Microstructural Analysis of Cementitious Materials. A one-of-a-kind reference providing the do’s and don’ts of cement chemistry, the book presents the latest research and development of characterisation techniques for cementitious materials, and serves as an invaluable resource for practicing professionals specializing in cement and concrete materials and other areas of cement and concrete technology.




The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability


Book Description

From July 10th through July 13th, 1994, an informal workshop co-organized by RILEM committees 116-PCD and 123-MME was held at Saint-Remy-Ies Chevreuse, France, and attended by 38 delegates from 16 countries. Twenty-nine papers were presented, converging the general subjects of modelling micro structures and predicting durability of concrete and other cement-based materials. A short summary follows: G. M. Idom's paper entitled "Modelling Research for Concrete Engineering" serves as an introduction to the workshop, presenting an overview of modelling research with the conelusion that the broad practica1 objective is to produce high-quality concrete. This means that many characteristics, ranging from rheology to alkali-silica reaction, must be modelled. In other words, the system must be understood. Idom's paper sets the stage for papers in two general areas: 1) models and 2) transport properties. After this, abrief survey of the develop ment of microstructurally-based models is presented. A elose relationship between computer power and speed is suggested. The first group of papers on models covers the subjects of scale and resolution. Most models define and predict characteristics of the pore system, which range in scale from nanometer to millimeter. Various types ofnetworks are proposed in these papers. A good microstructural model must describe the pores and other phases at ascale appropriate to the properties that the model predicts. Also, a good model should be based on fundamental knowledge. In the case of cement-based materials, the important properties may depend on the microstructure, especially the porosity, at several scales.




Textile Reinforced Concrete


Book Description

Textile reinforced concrete (TRC) has emerged in recent years as an attractive new high performance cement-based composite. Textiles can significantly improve the mechanical behavior of cement matrices under static and dynamic conditions, and give superior tensile strength, toughness, ductility, energy absorption and protection against environmental degrading influences. Flexibility with fabric production methods enables the control of fabric and yarn geometry. This, along with the ability to incorporate into the fabric a range of yarns of different types and performances, as well as cement matrix modifications, enables design of the composite to a wide range of needs. The book is intended to provide a comprehensive treatment of TRC, covering the basic fundamentals of the composite material itself and the principles governing its performance on a macro-scale as a component in a structure. It provides in-depth treatment of the fabric, methods for production of the composite, the micro-mechanics with special attention to the role of bonding and microstructure, behavior under static and dynamic loading, sustainability, design, and the applications of TRC composites.




Interfacial Transition Zone in Concrete


Book Description

An important new state-of-the-art report prepared by RILEM Technical Committee 108 ICC. It has been written by a team of leading international experts from the UK, USA, Canada, Israel, Germany, Denmark, South Africa, Italy and France. Research studies over recent years in the field of cement science have focused on the behaviour of the interfaces between the components of cement-based materials. The techniques used in other areas of materials science are being applied to the complex materials found in cements and concretes, and this book provides a significant survey of the present state of the art.