Atomic, Molecular, and Optical Physics


Book Description

The goals of atomic, molecular, and optical physics (AMO physics) are to elucidate the fundamental laws of physics, to understand the structure of matter and how matter evolves at the atomic and molecular levels, to understand light in all its manifestations, and to create new techniques and devices. AMO physics provides theoretical and experimental methods and essential data to neighboring areas of science such as chemistry, astrophysics, condensed-matter physics, plasma physics, surface science, biology, and medicine. It contributes to the national security system and to the nation's programs in fusion, directed energy, and materials research. Lasers and advanced technologies such as optical processing and laser isotope separation have been made possible by discoveries in AMO physics, and the research underlies new industries such as fiber-optics communications and laser-assisted manufacturing. These developments are expected to help the nation to maintain its industrial competitiveness and its military strength in the years to come. This report describes the field, characterizes recent advances, and identifies current frontiers of research.




Gateway to Condensed Matter Physics and Molecular Biophysics


Book Description

This new volume provides the necessary background material and brings into focus the fundamental concepts essential for advanced research in theoretical condensed matter physics and its interface with molecular biophysics. It is the outcome of the author’s long teaching and research career in theoretical condensed matter physics and related interdisciplinary fields. The author aims to motivate students to take up research in condensed matter physics and march toward new frontiers. He writes: “My long understanding of students’ attitude and orientation brings me to the conclusion that many of them are quite excited about the developments in the frontier research areas at the beginning of their career; however, a sizeable fraction of them start losing interest gradually as they are often unable to connect these developments with the basic physics they have studied. I have tried to fill this gap in this book.” To this end, special care has been taken to balance the physical concepts and mathematical expressions as well as proper mixing of theoretical and experimental aspects. He starts with the very well-known elementary ideas or basic concepts and goes forward so as to remove the apparent conceptual and technical gap between the known laws and various interesting, challenging, and novel experimental results and effects, some of which are amongst the latest discoveries. Key features: • Introduces a new way of looking at various important and fundamental phenomena in condensed matter from the perspective of microscopic theory • Explores a new interface of quantum condensed matter physics and molecular biophysics, highlighting research potentialities • Addresses the crucial questions surrounding these phenomena when they are mutually coexisting or competing in real condensed matter systems or materials, from both theoretical and experimental angles • Deals with biological molecules and some of their properties and processes and discusses the modeling of these with the help of condensed matter physics and statistical physics • Emphasizes fundamental concepts, particularly in condensed matter physics and making proper use of them




Soft Condensed Matter Physics in Molecular and Cell Biology


Book Description

Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system




Atomic, Molecular, and Optical Physics


Book Description

The goals of atomic, molecular, and optical physics (AMO physics) are to elucidate the fundamental laws of physics, to understand the structure of matter and how matter evolves at the atomic and molecular levels, to understand light in all its manifestations, and to create new techniques and devices. AMO physics provides theoretical and experimental methods and essential data to neighboring areas of science such as chemistry, astrophysics, condensed-matter physics, plasma physics, surface science, biology, and medicine. It contributes to the national security system and to the nation's programs in fusion, directed energy, and materials research. Lasers and advanced technologies such as optical processing and laser isotope separation have been made possible by discoveries in AMO physics, and the research underlies new industries such as fiber-optics communications and laser-assisted manufacturing. These developments are expected to help the nation to maintain its industrial competitiveness and its military strength in the years to come.This report describes the field, characterizes recent advances, and identifies current frontiers of research.




Quantum Systems in Physics, Chemistry, and Biology


Book Description

This book reviews the most significant developments in quantum methodology applied to a broad variety of problems in chemistry, physics, and biology. In particular, it discusses atomic and molecular structure, dynamics and spectroscopy as well as applications of quantum theory to biological and condensed matter systems. The volume contains twenty-four selected, peer-reviewed contributions based on the presentations given at the Twentieth International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XX), held in Varna, Bulgaria, in September 2015. It is divided into five sections containing the most relevant papers written by leading experts in the fields. This book will appeal to advanced graduate students, researchers, and academics involved in theoretical, quantum or statistical and computational chemical physics and physical chemistry.




Fundamentals of Polymer Physics and Molecular Biophysics


Book Description

"Provides a physical interpretation of the data obtained in macromolecular transport phenomena in a given system and also addresses some important issues and concepts related to biopolymers such as proteins and nucleic acids"--




Forces, Growth and Form in Soft Condensed Matter: At the Interface Between Physics and Biology


Book Description

The book reviews the current experimental and theoretical knowledge of the synergism between modern physics, soft condensed matter and biology, presenting a thorough discussion of the relative role of the various fundamental interactions in such systems: electrostatic, hydrophobic, steric, conformational, van der Waals, etc. These competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, the competing interactions influence various bioprocesses like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The authors include theoretical physicists, soft condensed matter experimentalists, biological physicists, and molecular biologists - all leaders in their respective fields. Aside from the need to gain new, fundamental insights, the subject area is also of great importance for many applications, in that self-assembly and hierarchical assembly are important features to achieve functionality on multiple length scales. Applications range from the nanoscopic (e.g., biomolecular material and copolymeric mesophases) to the microscopic (all organic microelectronics) to the macroscopic (high-performance structural composites).




Electrostatic Effects in Soft Matter and Biophysics


Book Description

Soft Condensed Matter commonly deals with materials that are mechanically soft and, more importantly, particularly prone to thermal fluctuation effects. Charged soft matter systems are especially interesting: they can be manufactured artificially as polyelectrolytes to serve as superabsorbers in dypers, as flocculation and retention agents, as thickeners and gelling agents, and as oil-recovery process aids. They are also abundant in living organisms, mostly performing important structural (e.g. membranes) and functional (e.g. DNA) tasks. The book describes the many areas in soft matter and biophysics where electrostatic interactions play an important role. It offers in-depth coverage of recent theoretical approaches, advances in computer simulation, and novel experimental techniques. Readership: Advanced undergraduate level in physics, physical chemistry, and theoretical biochemistry.




Quantum Systems in Chemistry and Physics, Part II


Book Description

The description of quantum systems is fundamental to an understanding of many problems in chemistry and physics. This volume records a representative slection of the papers delivered at the second European Workshop on Quantum Systems in Chemistry and Physics which was held at Jesus College, Oxford, April 6-9, 1997. The purpose of this international Workshop was to bring together chemists and physicists with a common interest--the quantum mechanical many-body problem--and to encourage collaboration and exchange of ideas on the fundamentals by promoting innovative theory and conceptual development rather than improvements in computatorial techniques and routine applications. Covers the following topics: Density matrices and density functional theory Electron correlation Relativistic effects Valence theory Nuclear motion Response theory Condensed matter Chemical reactions