Model Uncertainties in Foundation Design


Book Description

Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.




Drilled Shafts


Book Description




Uncertainty, Modeling, and Decision Making in Geotechnics


Book Description

Uncertainty, Modeling, and Decision Making in Geotechnics shows how uncertainty quantification and numerical modeling can complement each other to enhance decision-making in geotechnical practice, filling a critical gap in guiding practitioners to address uncertainties directly. The book helps practitioners acquire a working knowledge of geotechnical risk and reliability methods and guides them to use these methods wisely in conjunction with data and numerical modeling. In particular, it provides guidance on the selection of realistic statistics and a cost-effective, accessible method to address different design objectives, and for different problem settings, and illustrates the value of this to decision-making using realistic examples. Bringing together statistical characterization, reliability analysis, reliability-based design, probabilistic inverse analysis, and physical insights drawn from case studies, this reference guide from an international team of experts offers an excellent resource for state-of-the-practice uncertainty-informed geotechnical design for specialist practitioners and the research community.




Risk and Variability in Geotechnical Engineering


Book Description

This book presents cutting edge techniques for characterising, quantifying and modelling geomaterial variability in addition to methods for quantifying the influence of this variability on the performance of geotechnical structures. It includes state-of-the-art refereed journal papers by leading international researchers along with written and informal discussions on a selection of key submissions that were presented at a Symposium at the Institution of Civil Engineers on 9th May 2005.




LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures


Book Description

This report develops and calibrates procedures and modifies the AASHTO LRFD Bridge Design Specifications, Section 10-Foundations for the Strength Limit State Design of Shallow Foundations. The material in this report will be of immediate interest to bridge engineers and geotechnical engineers involved in the design of shallow foundations.




Reliability-Based Design in Geotechnical Engineering


Book Description

Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to incre