Conducting Polymers for Advanced Energy Applications


Book Description

This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications. FEATURES Covers materials, chemistry, various synthesis approaches, and the properties of conducting polymers and their composites Discusses commercialization and markets and elaborates on advanced applications Presents an overview and the advantages of using conducting polymers and their composites for advanced energy applications Describes a variety of nanocomposites, including metal oxides, chalcogenides, graphene, and materials beyond graphene Offers the fundamentals of electrochemical behavior This book provides a new direction for scientists, researchers, and students in materials science and polymer chemistry who seek to better understand the chemistry behind conducting polymers and improve their performance for use in advanced energy applications.




Conducting Polymers for Advanced Energy Applications


Book Description

This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications. FEATURES Covers materials, chemistry, various synthesis approaches, and the properties of conducting polymers and their composites Discusses commercialization and markets and elaborates on advanced applications Presents an overview and the advantages of using conducting polymers and their composites for advanced energy applications Describes a variety of nanocomposites, including metal oxides, chalcogenides, graphene, and materials beyond graphene Offers the fundamentals of electrochemical behavior This book provides a new direction for scientists, researchers, and students in materials science and polymer chemistry who seek to better understand the chemistry behind conducting polymers and improve their performance for use in advanced energy applications.




Polymer Materials for Energy and Electronic Applications


Book Description

Polymer Materials for Energy and Electronic Applications is among the first books to systematically describe the recent developments in polymer materials and their electronic applications. It covers the synthesis, structures, and properties of polymers, along with their composites. In addition, the book introduces, and describes, four main kinds of electronic devices based on polymers, including energy harvesting devices, energy storage devices, light-emitting devices, and electrically driving sensors. Stretchable and wearable electronics based on polymers are a particular focus and main achievement of the book that concludes with the future developments and challenges of electronic polymers and devices. - Provides a basic understanding on the structure and morphology of polymers and their electronic properties and applications - Highlights the current applications of conducting polymers on energy harvesting and storage - Introduces the emerging flexible and stretchable electronic devices - Adds a new family of fiber-shaped electronic devices




Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications


Book Description

Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites. - Provides thorough coverage of the latest pioneering research in the field of polymer-based smart composites - Offers an applications-oriented approach, enabling the reader to understand state-of-the-art optical, sensor and energy applications - Includes an in-depth introductory section, covering important aspects such as structure-property relationships and the role of conjugated polymers




Fundamentals and Emerging Applications of Polyaniline


Book Description

Fundamentals and Emerging Applications of Polyaniline presents in-depth coverage of synthetic routes, characterization tools, experimental procedures, and the preparation of PANI-based materials for advanced applications. Sections examine the various synthetic routes available for the polymerization of aniline, covering both conventional methods and new approaches, specific PANI-based materials, and their potential applications. Users will be able to understand how to use these methods in areas such as electromagnetic interference shielding, rechargeable batteries, light emitting diodes, super capacitors, anti-static packaging and coatings, photonics, biomedical applications, chemical and biochemical sensors. This is a highly valuable source of information for researchers, scientists and graduate students in polymer science, polymer composites, polymer chemistry, nanotechnology, physics and materials science. - Covers the latest synthetic approaches, such as ultrasound-assisted polymerization, irradiation path and electrochemical polymerization - Offers detailed information on PANI-based composites, including graphene, CNT and functionalized polyaniline - Explains how different PANI-based materials can be geared for specific cutting-edge applications across a range of fields




Polymer-Engineered Nanostructures for Advanced Energy Applications


Book Description

This book provides a comprehensive overview of engineering nanostructures mediated by functional polymers in combination with optimal synthesis and processing techniques. The focus is on polymer-engineered nanostructures for advanced energy applications. It discusses a variety of polymers that function as precursors, templates, nano-reactors, surfactants, stabilizers, modifiers, dopants, and spacers for directing self-assembly, assisting organization, and templating growth of numerous diverse nanostructures. It also presents a wide range of polymer processing techniques that enable the efficient design and optimal fabrication of nanostructured polymers, inorganics, and organic–inorganic nanocomposites using in-situ hybridization and/or ex-situ recombination methodologies. Combining state-of-the-art knowledge from polymer-guided fabrication of advanced nanostructures and their unique properties, it especially highlights the new, cutting-edge breakthroughs, future horizons, and insights into such nanostructured materials in applications such as photovoltaics, fuel cells, thermoelectrics, piezoelectrics, ferroelectrics, batteries, supercapacitors, photocatalysis, and hydrogen generation and storage. It offers an instructive and approachable guide to polymer-engineered nanostructures for further development of advanced energy materials to meet ever-increasing global energy demands. Interdisciplinary and broad perspectives from internationally respected contributors ensure this book serves as a valuable reference source for scientists, students, and engineers working in polymer science, renewable energy materials, materials engineering, chemistry, physics, surface/interface science, and nanotechnology. It is also suitable as a textbook for universities, institutes, and industrial institutions.




Nanomaterials for the Removal of Pollutants and Resource Reutilization


Book Description

Nanomaterials for the Removal of Pollutants and Resource Reutilization presents the fundamental principles necessary for the application of nanomaterials in environmental pollution control and resource reutilization, also describing specific novel applications of environmentally functional nanomaterials. In addition to outlining the applications of nanomaterials for pollution control, the book highlights problems and offers solutions. This comprehensive resource will inspire the next generation of nanomaterial designers, providing a state-of-the-art review and exploration of emerging developments. - Written by some of the world's top researchers in smart nanomaterials for environmental applications - Shows how to design novel functional nanomaterials for highly specific pollutant control and/or remediation uses - Covers a variety of pollution types, including heavy metals, pesticides and other chemical pollutants




Conducting Polymer Hybrids


Book Description

This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given. “Conducting Polymer Hybrids” is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.




Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications


Book Description

A timely overview of fundamental and advanced topics of conjugated polymer nanostructures Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications is a comprehensive reference on conjugated polymers for energy applications. Distinguished academic and editor Srabanti Ghosh offers readers a broad overview of the synthesis, characterization, and energy-related applications of nanostructures based on conjugated polymers. The book includes novel approaches and presents an interdisciplinary perspective rooted in the interfacing of polymer and synthetic chemistry, materials science, organic chemistry, and analytical chemistry. This book provides complete descriptions of conjugated polymer nanostructures and polymer-based hybrid materials for energy conversion, water splitting, and the degradation of organic pollutants. Photovoltaics, solar cells, and energy storage devices such as supercapacitors, lithium ion battery electrodes, and their associated technologies are discussed, as well. Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications covers both the fundamental topics and the most recent advances in this rapidly developing area, including: The design and characterization of conjugated polymer nanostructures, including the template-free and chemical synthesis of polymer nanostructures Conjugated polymer nanostructures for solar energy conversion and environmental protection, including the use of conjugated polymer-based nanocomposites as photocatalysts Conjugated polymer nanostructures for energy storage, including the use of nanocomposites as electrode materials The presentation of different and novel methods of utilizing conjugated polymer nanostructures for energy applications Perfect for materials scientists, polymer chemists, and physical chemists, Conjugated Polymer Nanostructures for Energy Conversion and Storage Applications also belongs on the bookshelves of organic chemists and any other practicing researchers, academics, or professionals whose work touches on these highly versatile and useful structures.




Handbook of Ecomaterials


Book Description