Confidence Intervals on Variance Components


Book Description

Summarizes information scattered in the technical literature on a subject too new to be included in most textbooks, but which is of interest to statisticians, and those who use statistics in science and education, at an advanced undergraduate or higher level. Overviews recent research on constructin




Analysis of Variance for Random Models, Volume 2: Unbalanced Data


Book Description

Systematic treatment of the commonly employed crossed and nested classification models used in analysis of variance designs with a detailed and thorough discussion of certain random effects models not commonly found in texts at the introductory or intermediate level. It also includes numerical examples to analyze data from a wide variety of disciplines as well as any worked examples containing computer outputs from standard software packages such as SAS, SPSS, and BMDP for each numerical example.




Analysis of Variance for Random Models


Book Description

ANOVA models involving random effects have found widespread application to experimental design in varied fields such as biology, econometrics, and engineering. Volume I of this two-part work is a comprehensive presentation of methods and techniques for point estimation, interval estimation, and hypotheses tests for linear models involving random effects. Volume I examines models with balanced data (orthogonal models); Volume II studies models with unbalanced data (non-orthogonal models). Accessible to readers with a modest mathematical and statistical background, the work will appeal to a broad audience of graduate students, researchers, and practitioners. It can be used as a graduate text or as a self-study reference.




Linear Mixed Models


Book Description

•Dedicates an entire chapter to the key theories underlying LMMs for clustered, longitudinal, and repeated measures data •Provides descriptions, explanations, and examples of software code necessary to fit LMMs in SAS, SPSS, R, Stata, and HLM •Contains detailed tables of estimates and results, allowing for easy comparisons across software procedures •Presents step-by-step analyses of real-world data sets that arise from a variety of research settings and study designs, including hypothesis testing, interpretation of results, and model diagnostics •Integrates software code in each chapter to compare the relative advantages and disadvantages of each package •Supplemented by a website with software code, datasets, additional documents, and updates




Statistical Tests for Mixed Linear Models


Book Description

An advanced discussion of linear models with mixed or randomeffects. In recent years a breakthrough has occurred in our ability todraw inferences from exact and optimum tests of variance componentmodels, generating much research activity that relies on linearmodels with mixed and random effects. This volume covers the mostimportant research of the past decade as well as the latestdevelopments in hypothesis testing. It compiles all currentlyavailable results in the area of exact and optimum tests forvariance component models and offers the only comprehensivetreatment for these models at an advanced level. Statistical Tests for Mixed Linear Models: Combines analysis and testing in one self-containedvolume. Describes analysis of variance (ANOVA) procedures in balancedand unbalanced data situations. Examines methods for determining the effect of imbalance ondata analysis. Explains exact and optimum tests and methods for theirderivation. Summarizes test procedures for multivariate mixed and randommodels. Enables novice readers to skip the derivations and discussionson optimum tests. Offers plentiful examples and exercises, manyof which are numerical in flavor. Provides solutions to selected exercises. Statistical Tests for Mixed Linear Models is an accessiblereference for researchers in analysis of variance, experimentaldesign, variance component analysis, and linear mixed models. It isalso an important text for graduate students interested in mixedmodels.




Linear Model Methodology


Book Description

Given the importance of linear models in statistical theory and experimental research, a good understanding of their fundamental principles and theory is essential. Supported by a large number of examples, Linear Model Methodology provides a strong foundation in the theory of linear models and explores the latest developments in data analysis.After




Variance Components


Book Description

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.




Skew-Normal Model Theories and Their Applications


Book Description

The book focuses on several skew-normal mixed effects models, and systematically explores statistical inference theories, methods, and applications of parameters of interest. This book is of academic value as it helps to establish a series of statistical inference theories and methods for skew-normal mixed effects models. On the applications side, it provides efficient methods and tools for practical data analysis in various fields including economics, finance, biology and medical science.




Variance Components


Book Description

Variance Components Estimation deals with the evaluation of the variation between observable data or classes of data. This is an up-to-date, comprehensive work that is both theoretical and applied. Topics include ML and REML methods of estimation; Steepest-Acent, Newton-Raphson, scoring, and EM algorithms; MINQUE and MIVQUE, confidence intervals for variance components and their ratios; Bayesian approaches and hierarchical models; mixed models for longitudinal data; repeated measures and multivariate observations; as well as non-linear and generalized linear models with random effects.




Exact Statistical Methods for Data Analysis


Book Description

Now available in paperback, this book covers some recent developments in statistical inference. It provides methods applicable in problems involving nuisance parameters such as those encountered in comparing two exponential distributions or in ANOVA without the assumption of equal error variances. The generalized procedures are shown to be more powerful in detecting significant experimental results and in avoiding misleading conclusions.