Programmable Digital Signal Processors


Book Description

"Presents the latest developments in the prgramming and design of programmable digital signal processors (PDSPs) with very-long-instruction word (VLIW) architecture, algorithm formulation and implementation, and modern applications for multimedia processing, communications, and industrial control."




Customizable Embedded Processors


Book Description

Customizable processors have been described as the next natural step in the evolution of the microprocessor business: a step in the life of a new technology where top performance alone is no longer sufficient to guarantee market success. Other factors become fundamental, such as time to market, convenience, energy efficiency, and ease of customization. This book is the first to explore comprehensively one of the most fundamental trends which emerged in the last decade: to treat processors not as rigid, fixed entities, which designers include "as is in their products; but rather, to build sound methodologies to tailor-fit processors to the specific needs of such products. This book addresses the goal of maintaining a very large family of processors, with a wide range of features, at a cost comparable to that of maintaining a single processor. - First book to present comprehensively the major ASIP design methodologies and tools without any particular bias - Written by most of the pioneers and top international experts of this young domain - Unique mix of management perspective, technical detail, research outlook, and practical implementation




Processor and System-on-Chip Simulation


Book Description

Simulation of computer architectures has made rapid progress recently. The primary application areas are hardware/software performance estimation and optimization as well as functional and timing verification. Recent, innovative technologies such as retargetable simulator generation, dynamic binary translation, or sampling simulation have enabled widespread use of processor and system-on-chip (SoC) simulation tools in the semiconductor and embedded system industries. Simultaneously, processor and SoC simulation is still a very active research area, e.g. what amounts to higher simulation speed, flexibility, and accuracy/speed trade-offs. This book presents and discusses the principle technologies and state-of-the-art in high-level hardware architecture simulation, both at the processor and the system-on-chip level.




Language-driven Exploration and Implementation of Partially Re-configurable ASIPs


Book Description

Increasing complexity of modern embedded systems demands system designers to ramp up their design productivity without compromising performance goals. This is promoted by modern Electronic System Level (ESL) techniques. Language-driven Exploration and Implementation of Partially Re-configurable ASIPs addresses an important segment of the ESL area by modeling partially re-configurable processors via high-level Architecture Description Language (ADL). This approach also hints an imminent evolution in the area of re-configurable system design.




Computer Systems: Architectures, Modeling, and Simulation


Book Description

This book constitutes the refereed proceedings of the 4th International Workshop on Systems, Architectures, Modeling, and Simulation, SAMOS 2004, held in Samos, Greece on July 2004. Besides the SAMOS 2004 proceedings, the book also presents 19 revised papers from the predecessor workshop SAMOS 2003. The 55 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on reconfigurable computing, architectures and implementation, and systems modeling and simulation.




Electronic Design Automation for IC System Design, Verification, and Testing


Book Description

The first of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC System Design, Verification, and Testing thoroughly examines system-level design, microarchitectural design, logic verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for integrated circuit (IC) designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on high-level synthesis, system-on-chip (SoC) block-based design, and back-annotating system-level models Offering improved depth and modernity, Electronic Design Automation for IC System Design, Verification, and Testing provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.




Reconfigurable Computing: Architectures, Tools and Applications


Book Description

This book constitutes the refereed proceedings of the 7th International Symposium on Reconfigurable Computing: Architectures, Tools and Applications, ARC 2011, held in Belfast, UK, in March 2011. The 40 revised papers presented, consisting of 24 full papers, 14 poster papers, and the abstracts of 2 plenary talks, were carefully reviewed and selected from 88 submissions. The topics covered are reconfigurable accelerators, design tools, reconfigurable processors, applications, device architecture, methodology and simulation, and system architecture.




High Performance Embedded Computing Handbook


Book Description

Over the past several decades, applications permeated by advances in digital signal processing have undergone unprecedented growth in capabilities. The editors and authors of High Performance Embedded Computing Handbook: A Systems Perspective have been significant contributors to this field, and the principles and techniques presented in the handbook are reinforced by examples drawn from their work. The chapters cover system components found in today’s HPEC systems by addressing design trade-offs, implementation options, and techniques of the trade, then solidifying the concepts with specific HPEC system examples. This approach provides a more valuable learning tool, Because readers learn about these subject areas through factual implementation cases drawn from the contributing authors’ own experiences. Discussions include: Key subsystems and components Computational characteristics of high performance embedded algorithms and applications Front-end real-time processor technologies such as analog-to-digital conversion, application-specific integrated circuits, field programmable gate arrays, and intellectual property–based design Programmable HPEC systems technology, including interconnection fabrics, parallel and distributed processing, performance metrics and software architecture, and automatic code parallelization and optimization Examples of complex HPEC systems representative of actual prototype developments Application examples, including radar, communications, electro-optical, and sonar applications The handbook is organized around a canonical framework that helps readers navigate through the chapters, and it concludes with a discussion of future trends in HPEC systems. The material is covered at a level suitable for practicing engineers and HPEC computational practitioners and is easily adaptable to their own implementation requirements.




System Level Design from HW/SW to Memory for Embedded Systems


Book Description

This book constitutes the refereed proceedings of the 5th IFIP TC 10 International Embedded Systems Symposium, IESS 2015, held in Foz do Iguaçu, Brazil, in November 2015. The 18 full revised papers presented were carefully reviewed and selected from 25 submissions. The papers present a broad discussion on the design, analysis and verification of embedded and cyber-physical systems including design methodologies, verification, performance analysis, and real-time systems design. They are organized in the following topical sections: cyber-physical systems, system-level design; multi/many-core system design; memory system design; and embedded HW/SW design and applications.