Conformation in Biology and Drug Design


Book Description

The Peptides: Analysis, Synthesis, Biology, Volume 7: Conformation in Biology and Drug Design focuses on the analysis of peptides, emphasizing the use of physical methods in peptide conformational analysis and the relationship of conformational properties of peptides to biological properties. This book consists of nine chapters. Chapter 1 provides a brief overview of the perspective on the application of physical methods to peptide conformational analysis. The use of circular dichroism (CD) spectroscopy to examine the conformational properties of peptides in solution is elaborated in Chapter 2, while the use of fluorescence spectroscopy to examine the special relationships of aromatic side-chain groups to one another is discussed in Chapter 3. In Chapter 4, the use of various theoretical methods to calculate the conformations of peptides is described. The methods used to stimulate peptide conformations and dynamics are outlined in Chapter 5. The last four chapters examine various aspects of the use of nuclear magnetic resonance (NMR) in peptide conformational analysis. This volume is suitable for biologists, specialists, and researchers interested in peptides and proteins.




Structure-Based Drug Design


Book Description

Introducing the most recent advances in crystallography, nuclear magnetic resonance, molecular modeling techniques, and computational combinatorial chemistry, this unique, interdisciplinary reference explains the application of three-dimensional structural information in the design of pharmaceutical drugs. Furnishing authoritative analyses by world-renowned experts, Structure-Based Drug Design discusses protein structure-based design in optimizing HIV protease inhibitors and details the biochemical, genetic, and clinical data on HIV-1 reverse transcriptase presents recent results on the high-resolution three-dimensional structure of the catalytic core domain of HIV-1 integrase as a foundation for divergent combination therapy focuses on structure-based design strategies for uncovering receptor antagonists to treat inflammatory diseases demonstrates a systematic approach to the design of inhibitory compounds in cancer treatment reviews current knowledge on the Interleukin-1 (IL-1) system and progress in the development of IL-1 modulators describes the influence of structure-based methods in designing capsid-binding inhibitors for relief of the common cold and much more!




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins







Structure-Based Drug Discovery


Book Description

The last decade has seen the confluence of several enabling technologies that have allowed protein crystallographic methods to live up to their true potential. Taken together, the numerous recent advances have made it possible to tackle difficult biological targets with a high probability of success: intact bacterial ribosomes have been structurally elucidated, as well as eukaryotic trans-membrane proteins like the potassium channel and GPCRs. It is now possible for medicinal chemists to have access to structural information on their latest small molecule candidates bound to the therapeutic target within days of compound synthesis, allowing structure guided ligand optimization to occur in "real time". Structure-Based Drug Discovery presents an array of methods used to generate crystal structures of biological macromolecules, how to leverage the structural information to design novel ligands anew, and how to iteratively optimize hits and convert them to leads. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Structure-Based Drug Discovery aims to provide scientists interested in adding SBDD to their arsenal of drug discovery methods with well-honed, up-to-date methodologies.




The Cancer Degradome


Book Description

This book covers recent knowledge of the composition of the Degradome, how it can be studied using modern approaches such as transcriptomics and mass spectrometry; and many other relevant subjects, including new approaches to targeting proteolysis for therapy.




Chirality in Drug Design and Development


Book Description

Covering every essential element in the development of chiral products, this reference provides a solid overview of the formulation, biopharmaceutical characteristics, and regulatory issues impacting the production of these pharmaceuticals. It supports researchers as they evaluate the pharmacodynamic, pharmacokinetic, and toxicological characteristics of specific enantiomers and chiral drug compounds and addresses in one convenient reference all the major challenges pertaining to drug chirality that have been neglected in the literature. Chirality in Drug Design and Development collects the latest studies from an interdisciplinary team of experts on chiral drug design.




The Ups and Downs in Drug Design


Book Description

The Ups and Downs in Drug Design: Adventures in Medicinal Chemistry highlights the necessity for an integrative approach in medicinal chemistry and chemical biology. As medicinal chemistry is not a monolithic science, it is important to emphasize the other various disciplines that are required for successful drug design. This book presents the author’s own personal experience in this field and describes the "ups" and "downs" that come with drug discovery. It is an excellent companion text for graduate and postgraduate students who would like further insight into the parameters of drug design, including the challenges that come with the project. Key Features Illustrates "real-life" examples in medicinal chemistry Integrates the use of physical, chemical, and biological concepts that are important in drug design Highlights the "ups" and "downs" that come with drug discovery Aims to inspire students who may be struggling with the challenges and thought process in drug design Intends to be an excellent companion text for graduate and postgraduate students




Textbook of Drug Design and Discovery, Third Edition


Book Description

Building on the success of the previous editions, Textbook of Drug Design and Discovery has been thoroughly revised and updated to provide a complete source of information on all facets of drug design and discovery for students of chemistry, pharmacy, pharmacology, biochemistry, and medicine. The book follows drug design from the initial lead identification through optimization and structure-activity relationship with reference to the final processes of clinical evaluation and registration. Chapters investigate the design of enzyme inhibitors and drugs for particular cellular targets such as ion channels and receptors, and also explore specific classes of drug such as peptidomimetics, antivirals and anticancer agents. The use of gene technology in pharmaceutical research, computer modeling techniques, and combinatorial approaches are also included.




Protein Conformational Dynamics


Book Description

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.