Combinatorics and topology related to involutions in Coxeter groups


Book Description

This dissertation consists of three papers in combinatorial Coxeter group theory. A Coxeter group is a group W generated by a set S, where all relations can be derived from the relations s2 = e for all s ?? S, and (ss?)m(s,s?) = e for some pairs of generators s ? s? in S, where e ?? W is the identity element and m(s, s?) is an integer satisfying that m(s, s?) = m(s?, s) ? 2. Two prominent examples of Coxeter groups are provided by the symmetric group Sn (i.e., the set of permutations of {1, 2, . . . , n}) and finite reflection groups (i.e., finite groups generated by reflections in some real euclidean space). There are also important infinite Coxeter groups, e.g., affine reflection groups. Every Coxeter group can be equipped with various natural partial orders, the most important of which is the Bruhat order. Any subset of a Coxeter group can then be viewed as an induced subposet. In Paper A, we study certain posets of this kind, namely, unions of conjugacy classes of involutions in the symmetric group. We obtain a complete classification of the posets that are pure (i.e., all maximal chains have the same length). In particular, we prove that the set of involutions with exactly one fixed point is pure, which settles a conjecture of Hultman in the affirmative. When the posets are pure, we give their rank functions. We also give a short, new proof of the EL-shellability of the set of fixed-point-free involutions, established by Can, Cherniavsky, and Twelbeck. Paper B also deals with involutions in Coxeter groups. Given an involutive automorphism ? of a Coxeter system (W, S), let ?(?) = {w ?? W | ?(w) = w?1} be the set of twisted involutions. In particular, ?(id) is the set of ordinary involutions in W. It is known that twisted involutions can be represented by words in the alphabet = { | s ?? S}, called -expressions. If ss? has finite order m(s, s?), let a braid move be the replacement of ? ? by ? ? ?, both consisting of m(s, s?) letters. We prove a word property for ?(?), for any Coxeter system (W, S) with any ?. More precisely, we provide a minimal set of moves, easily determined from the Coxeter graph of (W, S), that can be added to the braid moves in order to connect all reduced -expressions for any given w ?? ?(?). This improves upon a result of Hamaker, Marberg, and Pawlowski, and generalises similar statements valid in certain types due to Hu, Zhang, Wu, and Marberg. In Paper C, we investigate the topology of (the order complexes of) certain posets, called pircons. A special partial matching (SPM) on a poset is a matching of the Hasse diagram satisfying certain extra conditions. An SPM without fixed points is precisely a special matching as defined by Brenti. Let a pircon be a poset in which every non-trivial principal order ideal is finite and admits an SPM. Thus pircons generalise Marietti’s zircons. Our main result is that every open interval in a pircon is a PL ball or a PL sphere. An important subset of ?(?) is the set ??(?) = {?(w?1)w | w ?? W} of twisted identities. We prove that if ? does not flip any edges with odd labels in the Coxeter graph, then ??(?), with the order induced by the Bruhat order on W, is a pircon. Hence, its open intervals are PL balls or spheres, which confirms a conjecture of Hultman. It is also demonstrated that Bruhat orders on Rains and Vazirani’s quasiparabolic W-sets (under a boundedness assumption) form pircons. In particular, this applies to all parabolic quotients of Coxeter groups.




The Isomorphism Problem in Coxeter Groups


Book Description

The book is the first to give a comprehensive overview of the techniques and tools currently being used in the study of combinatorial problems in Coxeter groups. It is self-contained, and accessible even to advanced undergraduate students of mathematics.The primary purpose of the book is to highlight approximations to the difficult isomorphism problem in Coxeter groups. A number of theorems relating to this problem are stated and proven. Most of the results addressed here concern conditions which can be seen as varying degrees of uniqueness of representations of Coxeter groups. Throughout the investigation, the readers are introduced to a large number of tools in the theory of Coxeter groups, drawn from dozens of recent articles by prominent researchers in geometric and combinatorial group theory, among other fields. As the central problem of the book may in fact be solved soon, the book aims to go further, providing the readers with many techniques that can be used to answer more general questions. The readers are challenged to practice those techniques by solving exercises, a list of which concludes each chapter.




Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras


Book Description

Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.




Combinatorics of Coxeter Groups


Book Description

Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups




Reflection Groups and Coxeter Groups


Book Description

This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.




Reflection Groups and Invariant Theory


Book Description

Reflection groups and invariant theory is a branch of mathematics that lies at the intersection between geometry and algebra. The book contains a deep and elegant theory, evolved from various graduate courses given by the author over the past 10 years.




The Geometry and Topology of Coxeter Groups. (LMS-32)


Book Description

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.




Groups of Exceptional Type, Coxeter Groups and Related Geometries


Book Description

The book deals with fundamental structural aspects of algebraic and simple groups, Coxeter groups and the related geometries and buildings. All contributing authors are very active researchers in the topics related to the theme of the book. Some of the articles provide the latest developments in the subject; some provide an overview of the current status of some important problems in this area; some survey an area highlighting the current developments; and some provide an exposition of an area to collect problems and conjectures. It is hoped that these articles would be helpful to a beginner to start independent research on any of these topics, as well as to an expert to know some of the latest developments or to consider some problems for investigation.




The Geometry and Topology of Coxeter Groups


Book Description

The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.