Connexin Methods and Protocols


Book Description

Direct cell–cell communication is a common property of multicellular organisms that is achieved through membrane channels which are organized in gap junctions. The protein subunits of these intercellular channels, the connexins, form a multigene family that has been investigated in great detail in recent years. It has now become clear that, in different tissues, connexins speak several languages that control specific cellular functions. This progress has been made possible by the availability of new molecular tools and the improvement of basic techniques for the study of membrane channels, as well as by the use of genetic approaches to study protein function in vivo. More important, connexins have gained visibility because mutations in some connexin genes have been found to be linked to human genetic disorders. Connexin Methods and Protocols presents in detail a collection of te- niques currently used to study the cellular and molecular biology of connexins and their physiological properties. The field of gap junctions and connexin research has always been characterized by a multidisciplinary approach c- bining morphology, biochemistry, biophysics, and cellular and molecular biology. This book provides a series of cutting-edge protocols and includes a large spectrum of practical methods that are available to investigate the fu- tion of connexin channels. Connexin Methods and Protocols is divided into three main parts.




Nuclease Methods and Protocols


Book Description

Nucleases, enzymes that restructure or degrade nucleic acid polymers, are vital to the control of every area of metabolism. They range from “housekeeping” enzymes with broad substrate ranges to extremely specific tools (1). Many types of nucleases are used in lab protocols, and their commercial and clinical uses are expanding. The purpose of Nuclease Methods and Protocols is to introduce the reader to some we- characterized protein nucleases, and the methods used to determine their activity, structure, interaction with other molecules, and physiological role. Each chapter begins with a mini-review on a specific nuclease or a nuclease-related theme. Although many chapters cover several topics, they were arbitrarily divided into five parts: Part I, “Characterizing Nuclease Activity,” includes protocols and assays to determine general (processive, distributive) or specific mechanisms. Methods to assay nuclease products, identify cloned nucleases, and determine their physiological role are also included here. Part II, “Inhibitors and Activators of Nucleases,” summarizes assays for measuring the effects of other proteins and small molecules. Many of these inhibitors have clinical relevance. Part III, “Relating Nuclease Structure and Function,” provides an overview of methods to determine or model the 3-D structure of nucleases and their complexes with substrates and inhibitors. A 3-D structure can greatly aid the rational design of nucleases and inhibitors for specific purposes. Part IV, “Nucleases in the Clinic,” summarizes assays and protocols suitable for use with t- sues and for nuclease based therapeutics.




DNA'Protein Interactions


Book Description

Dr. Tom Moss assembles the new standard collection of cutting-edge techniques to identify key protein-DNA interactions and define their components, their manner of interaction, and their manner of function, both in the cell and in the test tube. The techniques span a wide range, from factor identification to atomic detail, and include multiple DNA footprinting analyses, including in vivo strategies, gel shift (EMSA) optimization, SELEX, surface plasmon resonance, site-specific DNA-protein crosslinking, and UV laser crosslinking. Comprehensive and broad ranging, DNA-Protein Interactions: Principles and Protocols, 2nd Edition, offers a stellar array of over 100 up-to-date and readily reproducible techniques that biochemists and molecular, cellular, and developmental biologists can use successfully today to understand DNA-protein interactions.




Steroid Receptor Methods


Book Description

A distinguished team of principal investigators and their associates describe in step-by-step detail a cross-section of the latest research techniques available for studying the endocrine system. As a basis for sophisticated biochemical analysis of receptor properties, the contributors provide methods for the production and purification of a variety of receptors, including progesterone, glucocorticoid, and androgen. Other protocols allow the reader to experiment with DNA binding characteristics, hormone binding assays, and the use of combinatorial chemistry for drug discovery. A series of novel methods utilizing the latest advances in immunochemistry, yeast two-hybrid screening, and fluorescence are included for the detection and analysis of a variety of cellular proteins that influence steroid receptor effectiveness.




Adipose Tissue Protocols


Book Description

Adipose tissue is recognized to be exquisitely sensitive to hormone action, and is also now recognized as a secretory and endocrine organ required for reproduction and good health. Adipocytes are “smart” cells able within the tissue to communicate with surrounding cells, but also with various organs, particularly via leptin acting on the central nervous system. Brown adipose tissue (BAT) and white adipose tissue (WAT) are known to be distinct tissues, whereas the heterogeneity of WAT depots is well est- lished. Unfortunately, excess WAT leads to obesity, which is the most common health problem in industrialized countries. Therefore, from both a scientific and a technical point of view, the time has come to create a survey of adipose tissues and their neglected adipocytes. In Adipose Tissue Protocols, I have attempted to gather together chapters from all areas of adipose tissue research—from in vivo to in vitro studies—and to provide methods covering a wide variety of techniques, including the choice of adipose tissue depot and of morphological techniques for the study of BAT and WAT; the isolation, subcellular fractionation, and transfection of adipocytes where the low density of these cells must be taken into account; assays of nutrient and ion fluxes and the metabolic aspects of nutrient uptake; assays of lipid-related enzymes; biopsies and quantification of lipid-related mRNAs; cultures of adipose precursor cells from WAT and BAT of various species, including human tissue; measurements of adipose secretory products; and assessment of WAT metabolism in vivo.




Proteoglycan Protocols


Book Description

Proteoglycans are some of the most elaborate macromolecules of mammalian and lower organisms. The covalent attachment of at least five types of glycosami- glycan side chains to more than forty individual protein cores makes these molecules quite complex and endows them with a multitude of biological functions. Proteoglycan Protocols offers a comprehensive and up-to-date collection of prepa- tive and analytical methods for the in-depth analysis of proteoglycans. Featuring st- by-step detailed protocols, this book will enable both novice and experienced researchers to isolate intact proteoglycans from tissues and cultured cells, to establish the composition of their carbohydrate moieties, to generate strategies for prokaryotic and eukaryotic expression, to utilize methods for the suppression of specific proteoglycan gene expression and for the detection of mutant cells and degradation products, and to study specific interactions between proteoglycans and extracellular matrix proteins as well as growth factors and their receptors. The readers will find concise, yet comprehensive techniques carefully drafted by leading experts in the field. Each chapter commences with a general Introduction, followed by a detailed Materials section, and an easy-to-follow Methods section. An asset of each chapter is the extensive notation that includes troubleshooting tips and practical considerations that are often lacking in formal methodology papers. The reader will find this section most valuable because it is clearly provided by experienced scientists who have first-hand knowledge of the techniques they outline. In addition, most of the chapters are well illustrated with examples of typical data generated with each method.




Genomics Protocols


Book Description

We must unashamedly admit that a large part of the motivation for editing Genomics Protocols was selfish. The possibility of assembling in a single volume a unique and comprehensive collection of complete protocols, relevant to our work and the work of our colleagues, was too good an opportunity to miss. We are pleased to report, however, that the outcome is something of use not only to those who are experienced practitioners in the genomics field, but is also valuable to the larger community of researchers who have recognized the potential of genomics research and may themselves be beginning to explore the technologies involved. Some of the techniques described in Genomics Protocols are clearly not restricted to the genomics field; indeed, a prerequisite for many procedures in this discipline is that they require an extremely high throughput, beyond the scope of the average investigator. However, what we have endeavored here to achieve is both to compile a collection of procedures concerned with geno- scale investigations and to incorporate the key components of “bottom-up” and “top-down” approaches to gene finding. The technologies described extend from those traditionally recognized as coming under the genomics umbrella, touch on proteomics (the study of the expressed protein complement of the genome), through to early therapeutic approaches utilizing the potential of genome programs via gene therapy (Chapters 27–30).




Gene Knockout Protocols


Book Description

As the major task of sequencing the human genome is near completion and full complement of human genes are catalogued, attention will be focused on the ultimate goal: to understand the normal biological functions of these genes, and how alterations lead to disease states. In this task there is a severe limitation in working with human material, but the mouse has been adopted as the favored animal model because of the available genetic resources and the highly conserved gene conservation linkage organization. In just of ten years since the first gene-targeting experiments were p- formed in embryonic stem (ES) cells and mutations transmitted through the mouse germline, more than a thousand mouse strains have been created. These achievements have been made possible by pioneering work that showed that ES cells derived from preimplantation mouse embryos could be cultured for prolonged periods without differentiation in culture, and that homologous rec- bination between targeting constructs and endogenous DNA occurred at a f- quency sufficient for recombinants to be isolated. In the next few years the mouse genome will be systematically altered, and the techniques for achi- ing manipulations are constantly being streamlined and improved.




Connexin Hemichannels


Book Description




Matrix Metalloproteinase Protocols


Book Description

Research in the matrix metalloproteinase field began with the demonstration by Gross and Lapière, in 1962, that resorbing tadpole tail expressed an enzyme that could degrade collagen gels. These humble beginnings have led us to the elucidation of around twenty distinct vertebrate MMPs, along with a variety of homologs from such diverse organisms as sea urchin, plants, nematode worm, and bacteria. This, coupled with four known specific inhibitors of MMPs, the TIMPs, gives a complex picture. Part I of Matrix Metalloproteinase Protocols provides the reader with a selective overview of the MMP arena, and a chance to come to grips with where the field has been, where it is, and where it is going. I hope that this complements all of the methodology that comes later. Part II presents the reader with a diverse set of methods for the expression and purification of MMPs and TIMPs, bringing together the long and often hard-earned experience of a number of researchers. Part III allows the reader to detect MMPs and TIMPs at both the protein and mRNA level, whereas Part IV gives the ability to assay MMP and TIMP activities in a wide variety of circumstances.