New Trends in Nonlinear Dynamics and Control, and their Applications


Book Description

A selection of papers exploring a wide spectrum of new trends in nonlinear dynamics and control, such as bifurcation control, state estimation and reconstruction, analysis of behavior and stabilities, dynamics of nonlinear neural network models, and numerical algorithms. The papers focus on new ideas and the latest developments in both theoretical and applied research topics of nonlinear control. Because many of the authors are leading researchers in their own fields, the papers presented in this volume reflect the state of the art in the areas of nonlinear dynamics and control. Many of the papers in this volume were first presented at the highly succesful ''Symposium on New Trends in Nonlinear Dynamics and Control, and Their Applications,'' held October 18-19, 2002, in Monterey, California.




Constrained Optimization and Optimal Control for Partial Differential Equations


Book Description

This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.




Optimization


Book Description

This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent.




Numerical Methods and Applications


Book Description







Finite Element Error Analysis for PDE-constrained Optimal Control Problems


Book Description

Subject of this work is the analysis of numerical methods for the solution of optimal control problems governed by elliptic partial differential equations. Such problems arise, if one does not only want to simulate technical or physical processes but also wants to optimize them with the help of one or more influence variables. In many practical applications these influence variables, so called controls, cannot be chosen arbitrarily, but have to fulfill certain inequality constraints. The numerical treatment of such control constrained optimal control problems requires a discretization of the underlying infinite dimensional function spaces. To guarantee the quality of the numerical solution one has to estimate and to quantify the resulting approximation errors. In this thesis a priori error estimates for finite element discretizations are proved in case of corners or edges in the underlying domain and nonsmooth coefficients in the partial differential equation. These facts influence the regularity properties of the solution and require adapted meshes to get optimal convergence rates. Isotropic and anisotropic refinement strategies are given and error estimates in polygonal and prismatic domains are proved. The theoretical results are confirmed by numerical tests.




Large-Scale Scientific Computing


Book Description

This book constitutes the thoroughly refereed post-proceedings of the 5th International Conference on Large-Scale Scientific Computations, LSSC 2005, held in Sozopol, Bulgaria in June 2005. The 75 revised full papers presented together with five invited papers were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections.




Practical Methods for Optimal Control Using Nonlinear Programming, Third Edition


Book Description

How do you fly an airplane from one point to another as fast as possible? What is the best way to administer a vaccine to fight the harmful effects of disease? What is the most efficient way to produce a chemical substance? This book presents practical methods for solving real optimal control problems such as these. Practical Methods for Optimal Control Using Nonlinear Programming, Third Edition focuses on the direct transcription method for optimal control. It features a summary of relevant material in constrained optimization, including nonlinear programming; discretization techniques appropriate for ordinary differential equations and differential-algebraic equations; and several examples and descriptions of computational algorithm formulations that implement this discretize-then-optimize strategy. The third edition has been thoroughly updated and includes new material on implicit Runge–Kutta discretization techniques, new chapters on partial differential equations and delay equations, and more than 70 test problems and open source FORTRAN code for all of the problems. This book will be valuable for academic and industrial research and development in optimal control theory and applications. It is appropriate as a primary or supplementary text for advanced undergraduate and graduate students.




Proceedings of the IUTAM Symposium on Optimal Guidance and Control for Autonomous Systems 2023


Book Description

This book showcases a collection of papers that present cutting-edge studies, methods, experiments, and applications in various interdisciplinary fields. These fields encompass optimal control, guidance, navigation, game theory, stability, nonlinear dynamics, robotics, sensor fusion, machine learning, and autonomy. The chapters reveal novel studies and methods, providing fresh insights into the field of optimal guidance and control for autonomous systems. The book also covers a wide range of relevant applications, showcasing how optimal guidance and control techniques can be effectively applied in various domains, including mechanical and aerospace engineering. From robotics to sensor fusion and machine learning, the papers explore the practical implications of these techniques and methodologies.




Applied and Computational Optimal Control


Book Description

The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.