Constitutive Modelling in Geomechanics


Book Description

The purpose of this book is to bridge the gap between the traditional Geomechanics and Numerical Geotechnical Modelling with applications in science and practice. Geomechanics is rarely taught within the rigorous context of Continuum Mechanics and Thermodynamics, while when it comes to Numerical Modelling, commercially available finite elements or finite differences software utilize constitutive relationships within the rigorous framework. As a result, young scientists and engineers have to learn the challenging subject of constitutive modelling from a program manual and often end up with using unrealistic models which violate the Laws of Thermodynamics. The book is introductory, by no means does it claim any completeness and state of the art in such a dynamically developing field as numerical and constitutive modelling of soils. The author gives basic understanding of conventional continuum mechanics approaches to constitutive modelling, which can serve as a foundation for exploring more advanced theories. A considerable effort has been invested here into the clarity and brevity of the presentation. A special feature of this book is in exploring thermomechanical consistency of all presented constitutive models in a simple and systematic manner.




Soil Constitutive Models


Book Description

GSP 128 contains papers by 19 prominent constitutive modelers presented at the Geo-Frontier Conference, held in Austin, Texas, January 24-26, 2005.




Constitutive Modeling of Geomaterials


Book Description

The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007. Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geotechnical structures. The objective of the symposium is to provide a forum for researchers and engineers working or interested in the area of constitutive modeling to meet together and share new ideas, achievements and experiences through presentations and discussions. Emphasis is placed on recent advances of constitutive modeling and its applications in both theoretic and experimental aspects. Six famous scholars have been invited for the plenary speeches of the symposiums. Some prominent scholars have been invited to organize four specialized workshops on hot topics, including Time-dependent stress-strain behavior of geomaterials, Constitutive modeling within critical state soil mechanics, Multiscale and multiphysics in geomaterials, and Damage to failure in rock structures . A total of 49 papers are included in the above topics. In addition, 51 papers are grouped under three topics covering Behaviour of geomaterials, Constitutive model, and Applications . The editors expect that the book can be helpful as a reference to all those in the field of constitutive modeling of geomaterials. "




Constitutive Modeling of Geomaterials


Book Description

Winner of the Japanese Geotechnical Society 2016 publication awardWritten by a veteran geotechnical engineer with a long record of research discoveries, Constitutive Modeling of Geomaterials: Principles and Applications presents a simple and unified approach to modeling various features of geomaterials in general stress systems. The book




Geotechnical Modelling


Book Description

Modelling forms an implicit part of all engineering design but many engineers engage in modelling without consciously considering the nature, validity and consequences of the supporting assumptions. Derived from courses given to postgraduate and final year undergraduate MEng students, this book presents some of the models that form a part of the typical undergraduate geotechnical curriculum and describes some of the aspects of soil behaviour which contribute to the challenge of geotechnical modelling. Assuming a familiarity with basic soil mechanics and traditional methods of geotechnical design, this book is a valuable tool for students of geotechnical and structural and civil engineering as well as also being useful to practising engineers involved in the specification of numerical or physical geotechnical modelling.




Constitutive Modeling of Soils and Rocks


Book Description

This title provides a comprehensive overview of elastoplasticity relating to soil and rocks. Following a general outline of the models of behavior and their internal structure, each chapter develops a different area of this subject relating to the author's particular expertise. The first half of the book concentrates on the elastoplasticity of soft soils and rocks, while the second half examines that of hard soils and rocks.




Practice of Constitutive Modelling for Saturated Soils


Book Description

This book describes the development of a constitutive modeling platform for soil testing, which is one of the key components in geomechanics and geotechnics. It discusses the fundamentals of the constitutive modeling of soils and illustrates the use of these models to simulate various laboratory tests. To help readers understand the fundamentals and modeling of soil behaviors, it first introduces the general stress–strain relationship of soils and the principles and modeling approaches of various laboratory tests, before examining the ideas and formulations of constitutive models of soils. Moving on to the application of constitutive models, it presents a modeling platform with a practical, simple interface, which includes various kinds of tests and constitutive models ranging from clay to sand, that is used for simulating most kinds of laboratory tests. The book is intended for undergraduate and graduate-level teaching in soil mechanics and geotechnical engineering and other related engineering specialties. Thanks to the inclusion of real-world applications, it is also of use to industry practitioners, opening the door to advanced courses on modeling within the industrial engineering and operations research fields.




Numerical Methods and Constitutive Modelling in Geomechanics


Book Description

The solution of stress analysis problems through numerical, computer oriented techniques is becoming more and more popular in soil and rock engineering. This is due to the ability of these methods to handle geometrically complex problems even in the presence of highly nonlinear material behaviour, characterizing the majority of soils and rocks, and of media consisting of two or more phases, like saturated and partially saturated soils. Aim of this book is to present to researchers and engineers working in the various branches of geomechanics an updated state of the research on the development and application of numerical methods in geotechnical and foundation engineering. Particular attention is devoted to the formulation of nonlinear material models and to their use for the analysis of complex engineering problems. In addition to the constitutive modelling, other topics discussed concern the use of the finite element and boundary element methods in geomechanics; the dynamic analysis of inelastic and saturated soils; the solution of seepage, consolidation and coupled problems; the analysis of soil-structure interaction problems; the numerical procedures for the interpretation of field measurements; the analysis of tunnels and underground openings.




Modeling in Geotechnical Engineering


Book Description

Modeling in Geotechnical Engineering is a one stop reference for a range of computational models, the theory explaining how they work, and case studies describing how to apply them. Drawing on the expertise of contributors from a range of disciplines including geomechanics, optimization, and computational engineering, this book provides an interdisciplinary guide to this subject which is suitable for readers from a range of backgrounds. Before tackling the computational approaches, a theoretical understanding of the physical systems is provided that helps readers to fully grasp the significance of the numerical methods. The various models are presented in detail, and advice is provided on how to select the correct model for your application. - Provides detailed descriptions of different computational modelling methods for geotechnical applications, including the finite element method, the finite difference method, and the boundary element method - Gives readers the latest advice on the use of big data analytics and artificial intelligence in geotechnical engineering - Includes case studies to help readers apply the methods described in their own work




Modeling in Geomechanics


Book Description

Modeling in Geomechanics Edited by Musharraf Zaman The University of Oklahoma, USA Giancarlo Gioda Politecnico di Milano, Italy John Booker University of Sydney, Australia Geomechanics is an interdisciplinary field involving the study of natural and man-made systems with emphasis on the mechanics of various interacting phenomena. It comprises numerous aspects of engineering and scientific disciplines, which share common bases in mathematics, mechanics and physics. In recent years, with the extraordinary growth of computing power and resources, progress in the generation of new theories and techniques for the analysis of geomechanics problems has far surpassed their actual use by practitioners. This has led to a gap between our ability to deal with complex, inter-disciplinary problems in geomechanics and the actual impact of these advances on engineering practice. This book contains contributions from an international group of accomplished researchers and practitioners from various branches of soil and rock engineering, and presents the latest theoretical developments and practical applications of modeling in geomechanics. Chapters are grouped into four main sections: * Computational procedures * Constitutive modeling and testing * Modeling and simulation * Applications Efforts have been made to include recent developments and provide suggestions and examples as to how these can be applied in modeling actual engineering problems. Researchers, practitioners and students in geomechanics, mechanics of solids, soil and rock engineering will find this book an invaluable reference.