Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems


Book Description

A comprehensive development of interpolating control, this monograph demonstrates the reduced computational complexity of a ground-breaking technique compared with the established model predictive control. The text deals with the regulation problem for linear, time-invariant, discrete-time uncertain dynamical systems having polyhedral state and control constraints, with and without disturbances, and under state or output feedback. For output feedback a non-minimal state-space representation is used with old inputs and outputs as state variables. Constrained Control of Uncertain, Time-Varying, Discrete-time Systems details interpolating control in both its implicit and explicit forms. In the former at most two linear-programming or one quadratic-programming problem are solved on-line at each sampling instant to yield the value of the control variable. In the latter the control law is shown to be piecewise affine in the state, and so the state space is partitioned into polyhedral cells so that at each sampling interval the cell to which the measured state belongs must be determined. Interpolation is performed between vertex control, and a user-chosen control law in its maximal admissible set surrounding the origin. Novel proofs of recursive feasibility and asymptotic stability of the vertex control law, and of the interpolating control law are given. Algorithms for implicit and explicit interpolating control are presented in such a way that the reader may easily realize them. Each chapter includes illustrative examples, and comparisons with model predictive control in which the disparity in computational complexity is shown to be particularly in favour of interpolating control for high-order systems, and systems with uncertainty. Furthermore, the performance of the two methods proves similar except in those cases when a solution cannot be found with model predictive control at all. The book concludes with two high dimensional examples and a benchmark robust model predictive control problem: the non-isothermal continuously-stirred-tank reactor. For academic control researchers and students or for control engineers interested in implementing constrained control systems Constrained Control of Uncertain, Time-Varying, Discrete-time Systems will provide an attractive low-complexity control alternative for cases in which model predictive control is currently attempted.




Control of Uncertain Systems with Bounded Inputs


Book Description

In practical control problems, many constraints have to be handled in order to design controllers which operate in a real environment. By combining results on robust control and saturating control, this book attempts to provide positive help for practical situations and, as one of the first books to merge the two control fields, it should generate considerable interest in scientific/acad emic circles. The ten chapters, which deal with stabilization and control of both linear and nonlinear systems, are each independent in their approach - some deal purely with theoretical results whilst others concentrate on ways in which the theory can be applied. The book's unity is secured by the desire to formulate control design requirements through constraints on input and model uncertainty description.




Dynamics and Control


Book Description

This multi-authored volume presents selected papers from the Eighth Workshop on Dynamics and Control. Many of the papers represent significant advances in this area of research, and cover the development of control methods, including the control of dynamical systems subject to mixed constraints on both the control and state variables, and the development of a control design method for flexible manipulators with mismatched uncertainties. Advances in dynamic systems are presented, particularly in game-theoretic approaches and also the applications of dynamic systems methodology to social and environmental problems, for example, the concept of virtual biospheres in modeling climate change in terms of dynamical systems.




Stability and Control Processes


Book Description

The proceedings of the 4th Stability and Control Processes Conference are focused on modern applied mathematics, stability theory, and control processes. The conference was held in recognition of the 90th birthday of Professor Vladimir Ivanovich Zubov (1930–2000). This selection of papers reflects the wide-ranging nature of V. I. Zubov’s work, which included contributions to the development of the qualitative theory of differential equations, the theory of rigid body motion, optimal control theory, and the theory of electromagnetic fields. It helps to advance many aspects of the theory of control systems, including questions of motion stability, nonlinear oscillations in control systems, navigation and reliability of control devices, vibration theory, and quantization of orbits. The disparate applications covered by the book – in mechanical systems, game theory, solid-state physics, socio-economic systems and medical and biological systems, control automata and navigation – are developments from Professor Zubov’s in-depth studies on the theory of stability of motion, the theory of automatic control and the theory of the motions of optimal processes. Stability and Control Processes presents research continuing the legacy of V. I. Zubov and updates it with sections focused on intelligence-based control. These proceedings will be of interest to academics, professionals working in industry and researchers alike.




Developments in Model-Based Optimization and Control


Book Description

This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.




Variance-Constrained Multi-Objective Stochastic Control and Filtering


Book Description

Unifies existing and emerging concepts concerning multi-objective control and stochastic control with engineering-oriented phenomena Establishes a unified theoretical framework for control and filtering problems for a class of discrete-time nonlinear stochastic systems with consideration to performance Includes case studies of several nonlinear stochastic systems Investigates the phenomena of incomplete information, including missing/degraded measurements, actuator failures and sensor saturations Considers both time-invariant systems and time-varying systems Exploits newly developed techniques to handle the emerging mathematical and computational challenges




Model Predictive Control


Book Description

Model Predictive Control Understand the practical side of controlling industrial processes Model Predictive Control (MPC) is a method for controlling a process according to given parameters, derived in many cases from empirical models. It has been widely applied in industrial units to increase revenue and promoting sustainability. Systematic overviews of this subject, however, are rare, and few draw on direct experience in industrial settings. Assuming basic knowledge of the relevant mathematical and algebraic modeling techniques, the book’s title combines foundational theories of MPC with a thorough sense of its practical applications in an industrial context. The result is a presentation uniquely suited to rapid incorporation in an industrial workplace. Model Predictive Control readers will also find: Two-part organization to balance theory and applications Selection of topics directly driven by industrial demand An author with decades of experience in both teaching and industrial practice This book is ideal for industrial control engineers and researchers looking to understand MPC technology, as well as advanced undergraduate and graduate students studying predictive control and related subjects.




Advances in Discrete Time Systems


Book Description

This volume brings about the contemporary results in the field of discrete-time systems. It covers papers written on the topics of robust control, nonlinear systems and recent applications. Although the technical views are different, they all geared towards focusing on the up-to-date knowledge gain by the researchers and providing effective developments along the systems and control arena. Each topic has a detailed discussions and suggestions for future perusal by interested investigators.




Stability Analysis of Markovian Jump Systems


Book Description

This book focuses on the stability analysis of Markovian jump systems (MJSs) with various settings and discusses its applications in several different areas. It also presents general definitions of the necessary concepts and an overview of the recent developments in MJSs. Further, it addresses the general robust problem of Markovian jump linear systems (MJLSs), the asynchronous stability of a class of nonlinear systems, the robust adaptive control scheme for a class of nonlinear uncertain MJSs, the practical stability of MJSs and its applications as a modelling tool for networked control systems, Markovian-based control for wheeled mobile manipulators and the jump-linear-quadratic (JLQ) problem of a class of continuous-time MJLSs. It is a valuable resource for researchers and graduate students in the field of control theory and engineering.




Filtering and Control for Classes of Two-Dimensional Systems


Book Description

This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · General theory and methods of analysis and optimal synthesis for 2-D systems; and · Application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of Two-Dimensional Systems will be a useful reference for exploring the field of 2-D systems either from a purely theoretical research perspective or from the point of view of a multitude of potential applications including image processing, and the study of seismographic data or thermal processes.