Constraint Theory And Quantization Methods: From Relativistic Particles To Field Theory And General Relativity


Book Description

This second workshop on constraint theory aims at reviewing the developments that have taken place in the theory of singular Lagrangians and Dirac-Bergmann Hamiltonian constraints as well as their quantization. Since this theory lies behind all special and general relativistic systems, the topics covered here naturally range from mathematical physics to relativistic system particles, strings and fields and further to general relativity. The variety of topics discussed makes this an important, interesting and informative book.










Relativistic Quantum Mechanics and Field Theory


Book Description

An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.




Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)


Book Description

The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.




New Non-Perturbative Methods and Quantization on the Light Cone


Book Description

Among the several distinct ways of formulating and quantizing a Hamiltonian system, the light cone approach enjoys special status because it has the largest stability group. The aim of this volume is to present recent achievements and open problems in this rather unusual quantization framework to a large audience. The formulation is set up in a comprehensive introduction where the issues are also clearly indicated with specific examples: vacuum structure, signature of non-perturbative effects, chiral symmetry breaking, light cone gauge theories, etc. The following chapters address these topics through a selection of the most relevant contributions presented at Les Houches. This volume should prove valuable to newcomers in the field, and graduates and academics.




An Introduction To Quantum Field Theory


Book Description

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.










Trends in General Relativity and Quantum Cosmology


Book Description

Cosmology deals with the nature of the universe. It can be broadly divided into three great ages. The first began in the 6th century BC with the Pythagorean concept of a spherical Earth that is part of a universe in which the motions of the planets are governed by the harmonious relations of natural laws. The second began in the 16th century with the Copernican revolution. This in turn led into Newton's infinite universe. The third began in the early 20th century with Albert Einstein's theory of general relativity and developed into the expanding universe we know today. Einstein's general theory of relativity extended the new space and time concepts of the special theory of relativity from the domain of electric and magnetic phenomena to all of physics and, particularly, to the theory of gravitation. By building on Einstein's previous work on special relativity, general relativity sought to deal with accelerating frames of reference. This in turn led to the principle of equivalence. By dealing with accelerating frames of reference, general relativity provides astronomers with the best theory to predict the effects of gravity. This book examines in detail new and important work in this field.