Constructing Nonhomeomorphic Stochastic Flows


Book Description

The purpose of this article is the construction of stochastic flows from the finite-dimensional distributions without any smoothness assumptions. Also examines the relation between covariance functions and finite-dimensional distributions. The stochastic continuity of stochastic flows in the time parameter are proved in each section. These results give some extensions of the results obtained by Harris, by Baxendale and Harris and by other authors. In particular, the author studies coalescing flows, which were introduced by Harris for the study of flows of nonsmooth maps.







Geometry of Random Motion


Book Description

In July 1987, an AMS-IMS-SIAM Joint Summer Research Conference on Geometry of Random Motion was held at Cornell University. The initial impetus for the meeting came from the desire to further explore the now-classical connection between diffusion processes and second-order (hypo)elliptic differential operators. To accomplish this goal, the conference brought together leading researchers with varied backgrounds and interests: probabilists who have proved results in geometry, geometers who have used probabilistic methods, and probabilists who have studied diffusion processes. Focusing on the interplay between probability and differential geometry, this volume examines diffusion processes on various geometric structures, such as Riemannian manifolds, Lie groups, and symmetric spaces. Some of the articles specifically address analysis on manifolds, while others center on (nongeometric) stochastic analysis. The majority of the articles deal simultaneously with probabilistic and geometric techniques. Requiring a knowledge of the modern theory of diffusion processes, this book will appeal to mathematicians, mathematical physicists, and other researchers interested in Brownian motion, diffusion processes, Laplace-Beltrami operators, and the geometric applications of these concepts. The book provides a detailed view of the leading edge of research in this rapidly moving field.




Diffusion Processes and Related Problems in Analysis, Volume II


Book Description

During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.




Stochastic Dynamics


Book Description

Focusing on the mathematical description of stochastic dynamics in discrete as well as in continuous time, this book investigates such dynamical phenomena as perturbations, bifurcations and chaos. It also introduces new ideas for the exploration of infinite dimensional systems, in particular stochastic partial differential equations. Example applications are presented from biology, chemistry and engineering, while describing numerical treatments of stochastic systems.




Spatial Stochastic Processes


Book Description

This volume has been created in honor of the seventieth birthday of Ted Harris, which was celebrated on January 11th, 1989. The papers rep resent the wide range of subfields of probability theory in which Ted has made profound and fundamental contributions. This breadth in Ted's research complicates the task of putting together in his honor a book with a unified theme. One common thread noted was the spatial, or geometric, aspect of the phenomena Ted investigated. This volume has been organized around that theme, with papers covering four major subject areas of Ted's research: branching processes, percola tion, interacting particle systems, and stochastic flows. These four topics do not· exhaust his research interests; his major work on Markov chains is commemorated in the standard technology "Harris chain" and "Harris recurrent" . The editors would like to take this opportunity to thank the speakers at the symposium and the contributors to this volume. Their enthusi astic support is a tribute to Ted Harris. We would like to express our appreciation to Annette Mosley for her efforts in typing the manuscripts and to Arthur Ogawa for typesetting the volume. Finally, we gratefully acknowledge the National Science Foundation and the University of South ern California for their financial support.




Probability Towards 2000


Book Description

Senior probabilists from around the world with widely differing specialities gave their visions of the state of their specialty, why they think it is important, and how they think it will develop in the new millenium. The volume includes papers given at a symposium at Columbia University in 1995, but papers from others not at the meeting were added to broaden the coverage of areas. All papers were refereed.