Experiments with Dispersion Engineered Bose-Einstein Condensates


Book Description

The experiments are conducted with an experimental apparatus built at WSU. To facilitate the studies of this thesis, a number of new tools have been installed in the setup, such as multi-dimensional optical lattices, precision magnetic field control, and a Raman laser system. Details of these technological advances will be described together with the scientific results that they have enabled.




Localisation of Bose-Einstein Condensates in Optical Lattices


Book Description

The properties of Bose-Einstein condensates can be studied and controlled effectively when trapped in optical lattices formed by two counter-propagating laser beams. The dynamics of Bose-Einstein condensates in optical lattices are well-described by a continuous model using the Gross-Pitaevskii equation in a modulated potential or, in the case of deep potentials, a discrete model using the Discrete Nonlinear Schrodinger equation. Spatially localised modes, known as lattice solitons in the continuous model, or discrete breathers in the discrete model, can occur and are the focus of this thesis. Theoretical and computational studies of these localised modes are investigated in three different situations. Firstly, a model of a Bose-Einstein condensate in a ring optical lattice with atomic dissipations applied at a stationary or at a moving location on the ring is presented in the continuous model. The localised dissipation is shown to generate and stabilise both stationary and traveling lattice solitons. The solutions generated include spatially stationary quasiperiodic lattice solitons and a family of traveling lattice solitons with two intensity peaks per potential well with no counterpart in the discrete case. Collisions between traveling and stationary lattice solitons as well as between two traveling lattice solitons display a dependence on the lattice depth. Then, collisions with a potential barrier of either travelling lattice solitons or travelling discrete breathers are investigated along with their dependence on the height of the barrier. Regions of complete reection or of partial reflection where the incoming soliton/breather is split in two, are observed and understood interms of the soliton properties. Partial trapping of the atoms in the barrier is observed for positive barrier heights due to the negative effective mass of the solitons/breathers. Finally, two coupled discrete nonlinear Schrodinger equations can describe the interaction and collisions of breathers in two-species Bose-Einstein condensates in deep optical lattices. This is done for two cases of experimental relevance: a mixture of two ytterbium isotopes and a mixture of Rubidium (87Rb) and Potassium(41K) atoms. Depending on their initial separation, interaction between stationary breathers of different species can lead to the formation of symbiotic localised structures or transform one of the breathers from a stationary one into a travelling one. Collisions between travelling and stationary discrete breathers composed of different species are separated in four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is suffciently large and repulsive.




Quantum Hydrodynamics in One- and Two-component Bose-Einstein Condensates


Book Description

Several prototypical experiments concerning quantum hydrodynamics are realized in this thesis using one and two-component Bose-Einstein condensates (BECs). The experiments are conducted with an experimental apparatus built at WSU that is capable of reliably producing 87Rb BECs and 40K degenerate Fermi gases (DFGs). The apparatus, which has undergone many modifications and upgrades since it was first built, will be described in detail. The upgrades include the addition of fermionic potassium atoms, installation of a fully electromagnetic Ioffe-Pritchard type trap with excellent optical access to the BEC, and the addition of an optical dipole trap (and optical lattices).







Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.










Ultracold Atoms in a Disordered Optical Lattice


Book Description

In this work, we describe the construction of an apparatus to create Bose-Einstein condensates of 87Rb atoms and load condensates into a disordered 3D optical lattice, realizing the DBH model. Also as part of this work, the major technical components needed to implement a stroboscopic quantum simulation scheme were constructed and a number of calculations were performed.