The Two-Dimensional Riemann Problem in Gas Dynamics


Book Description

The Riemann problem is the most fundamental problem in the entire field of non-linear hyperbolic conservation laws. Since first posed and solved in 1860, great progress has been achieved in the one-dimensional case. However, the two-dimensional case is substantially different. Although research interest in it has lasted more than a century, it has yielded almost no analytical demonstration. It remains a great challenge for mathematicians. This volume presents work on the two-dimensional Riemann problem carried out over the last 20 years by a Chinese group. The authors explore four models: scalar conservation laws, compressible Euler equations, zero-pressure gas dynamics, and pressure-gradient equations. They use the method of generalized characteristic analysis plus numerical experiments to demonstrate the elementary field interaction patterns of shocks, rarefaction waves, and slip lines. They also discover a most interesting feature for zero-pressure gas dynamics: a new kind of elementary wave appearing in the interaction of slip lines-a weighted Dirac delta shock of the density function. The Two-Dimensional Riemann Problem in Gas Dynamics establishes the rigorous mathematical theory of delta-shocks and Mach reflection-like patterns for zero-pressure gas dynamics, clarifies the boundaries of interaction of elementary waves, demonstrates the interesting spatial interaction of slip lines, and proposes a series of open problems. With applications ranging from engineering to astrophysics, and as the first book to examine the two-dimensional Riemann problem, this volume will prove fascinating to mathematicians and hold great interest for physicists and engineers.




Hyperbolic Partial Differential Equations


Book Description

Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic McKendrick equations for age-structured population growth; and logistic models of structured population growth. A number of book reviews are also included. This journal provides an interdisciplinary forum for the presentation of results not included in other particular journals, and thus will be beneficial to those interested in this field of study.




Multidimensional Hyperbolic Problems and Computations


Book Description

This IMA Volume in Mathematics and its Applications MULTIDIMENSIONAL HYPERBOLIC PROBLEMS AND COMPUTATIONS is based on the proceedings of a workshop which was an integral part ofthe 1988-89 IMA program on NONLINEAR WAVES. We are grateful to the Scientific Commit tee: James Glimm, Daniel Joseph, Barbara Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing an exciting and stimulating year-long program. We especially thank the Work shop Organizers, Andrew Majda and James Glimm, for bringing together many of the major figures in a variety of research fields connected with multidimensional hyperbolic problems. A vner Friedman Willard Miller PREFACE A primary goal of the IMA workshop on Multidimensional Hyperbolic Problems and Computations from April 3-14, 1989 was to emphasize the interdisciplinary nature of contemporary research in this field involving the combination of ideas from the theory of nonlinear partial differential equations, asymptotic methods, numerical computation, and experiments. The twenty-six papers in this volume span a wide cross-section of this research including some papers on the kinetic theory of gases and vortex sheets for incompressible flow in addition to many papers on systems of hyperbolic conservation laws. This volume includes several papers on asymptotic methods such as nonlinear geometric optics, a number of articles applying numerical algorithms such as higher order Godunov methods and front tracking to physical problems along with comparison to experimental data, and also several interesting papers on the rigorous mathematical theory of shock waves.










Numerical Approximation of Hyperbolic Systems of Conservation Laws


Book Description

This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case.




Systems of Conservation Laws


Book Description

This work should serve as an introductory text for graduate students and researchers working in the important area of partial differential equations with a focus on problems involving conservation laws. The only requisite for the reader is a knowledge of the elementary theory of partial differential equations. Key features of this work include: * broad range of topics, from the classical treatment to recent results, dealing with solutions to 2D compressible Euler equations * good review of basic concepts (1-D Riemann problems) * concrete solutions presented, with many examples, over 100 illustrations, open problems, and numerical schemes * numerous exercises, comprehensive bibliography and index * appeal to a wide audience of applied mathematicians, graduate students, physicists, and engineers Written in a clear, accessible style, the book emphasizes more recent results that will prepare readers to meet modern challenges in the subject, that is, to carry out theoretical, numerical, and asymptotical analysis.