Construction of Wavelets Through Walsh Functions


Book Description

This book focuses on the fusion of wavelets and Walsh analysis, which involves non-trigonometric function series (or Walsh–Fourier series). The primary objective of the book is to systematically present the basic properties of non-trigonometric orthonormal systems such as the Haar system, Haar–Vilenkin system, Walsh system, wavelet system and frame system, as well as updated results on the book’s main theme. Based on lectures that the authors presented at several international conferences, the notions and concepts introduced in this interdisciplinary book can be applied to any situation where wavelets and their variants are used. Most of the applications of wavelet analysis and Walsh analysis can be tried for newly constructed wavelets. Given its breadth of coverage, the book offers a valuable resource for theoreticians and those applying mathematics in diverse areas. It is especially intended for graduate students of mathematics and engineering and researchers interested in applied analysis.




Wavelet Analysis on Local Fields of Positive Characteristic


Book Description

This book discusses the theory of wavelets on local fields of positive characteristic. The discussion starts with a thorough introduction to topological groups and local fields. It then provides a proof of the existence and uniqueness of Haar measures on locally compact groups. It later gives several examples of locally compact groups and describes their Haar measures. The book focuses on multiresolution analysis and wavelets on a local field of positive characteristic. It provides characterizations of various functions associated with wavelet analysis such as scaling functions, wavelets, MRA-wavelets and low-pass filters. Many other concepts which are discussed in details are biorthogonal wavelets, wavelet packets, affine and quasi-affine frames, MSF multiwavelets, multiwavelet sets, generalized scaling sets, scaling sets, unconditional basis properties of wavelets and shift invariant spaces.




Mathematical Modelling, Optimization, Analytic and Numerical Solutions


Book Description

This book discusses a variety of topics related to industrial and applied mathematics, focusing on wavelet theory, sampling theorems, inverse problems and their applications, partial differential equations as a model of real-world problems, computational linguistics, mathematical models and methods for meteorology, earth systems, environmental and medical science, and the oil industry. It features papers presented at the International Conference in Conjunction with 14th Biennial Conference of ISIAM, held at Guru Nanak Dev University, Amritsar, India, on 2–4 February 2018. The conference has emerged as an influential forum, bringing together prominent academic scientists, experts from industry, and researchers. The topics discussed include Schrodinger operators, quantum kinetic equations and their application, extensions of fractional integral transforms, electrical impedance tomography, diffuse optical tomography, Galerkin method by using wavelets, a Cauchy problem associated with Korteweg–de Vries equation, and entropy solution for scalar conservation laws. This book motivates and inspires young researchers in the fields of industrial and applied mathematics.




Fundamental Papers in Wavelet Theory


Book Description

This book traces the prehistory and initial development of wavelet theory, a discipline that has had a profound impact on mathematics, physics, and engineering. Interchanges between these fields during the last fifteen years have led to a number of advances in applications such as image compression, turbulence, machine vision, radar, and earthquake prediction. This book contains the seminal papers that presented the ideas from which wavelet theory evolved, as well as those major papers that developed the theory into its current form. These papers originated in a variety of journals from different disciplines, making it difficult for the researcher to obtain a complete view of wavelet theory and its origins. Additionally, some of the most significant papers have heretofore been available only in French or German. Heil and Walnut bring together these documents in a book that allows researchers a complete view of wavelet theory's origins and development.




Computational Science and its Applications


Book Description

Computational science is a rapidly growing multidisciplinary field concerned with the design, implementation, and use of mathematical models to analyze and solve real-world problems. It is an area of science that spans many disciplines and which involves the development of models and allows the use of computers to perform simulations or numerical analysis to understand problems that are computational and theoretical. Computational Science and its Applications provides an opportunity for readers to develop abilities to pose and solve problems that combine insights from one or more disciplines from the natural sciences with mathematical tools and computational skills. This requires a unique combination of applied and theoretical knowledge and skills. The topics covered in this edited book are applications of wavelet and fractals, modeling by partial differential equations on flat structure as well as on graphs and networks, computational linguistics, prediction of natural calamities and diseases like epilepsy seizure, heart attack, stroke, biometrics, modeling through inverse problems, interdisciplinary topics of physics, mathematics, and medical science, and modeling of terrorist attacks and human behavior. The focus of this book is not to educate computer specialists, but to provide readers with a solid understanding of basic science as well as an integrated knowledge on how to use essential methods from computational science. Features: Modeling of complex systems Cognitive computing systems for real-world problems Presentation of inverse problems in medical science and their numerical solutions Challenging research problems in many areas of computational science This book could be used as a reference book for researchers working in theoretical research as well as those who are doing modeling and simulation in such disciplines as physics, biology, geoscience, and mathematics, and those who have a background in computational science.




Statistical Modeling by Wavelets


Book Description

A comprehensive, step-by-step introduction to wavelets in statistics. What are wavelets? What makes them increasingly indispensable in statistical nonparametrics? Why are they suitable for "time-scale" applications? How are they used to solve such problems as denoising, regression, or density estimation? Where can one find up-to-date information on these newly "discovered" mathematical objects? These are some of the questions Brani Vidakovic answers in Statistical Modeling by Wavelets. Providing a much-needed introduction to the latest tools afforded statisticians by wavelet theory, Vidakovic compiles, organizes, and explains in depth research data previously available only in disparate journal articles. He carefully balances both statistical and mathematical techniques, supplementing the material with a wealth of examples, more than 100 illustrations, and extensive references-with data sets and S-Plus wavelet overviews made available for downloading over the Internet. Both introductory and data-oriented modeling topics are featured, including: * Continuous and discrete wavelet transformations. * Statistical optimality properties of wavelet shrinkage. * Theoretical aspects of wavelet density estimation. * Bayesian modeling in the wavelet domain. * Properties of wavelet-based random functions and densities. * Several novel and important wavelet applications in statistics. * Wavelet methods in time series. Accessible to anyone with a background in advanced calculus and algebra, Statistical Modeling by Wavelets promises to become the standard reference for statisticians and engineers seeking a comprehensive introduction to an emerging field.




Wavelets Through a Looking Glass


Book Description

? Concise background material for each chapter, open problems, exercises, bibliography, and comprehensive index make this work a fine pedagogical and reference resource.; New previously unpublished results appear on the homotopy of multiresolutions, approximation theory, the spectrum and structure of the fixed points of the associated transfer, subdivision operators; Key topics of wavelet theory are examined; Excellent graphics show how wavelets depend on the spectra of the transfer operators; The important role of the spectrum of a transfer operator is studied; This self-contained book deals with important applications to signal processing, communications engineering, computer graphics algorithms, qubit algorithms and chaos theory.




Wavelets in Soft Computing


Book Description

This book presents the state of integration of wavelet theory and multiresolution analysis into soft computing. It is the first book on hybrid methods combining wavelet analysis with fuzzy logic, neural networks or genetic algorithms. Much attention is given to new approaches (fuzzy-wavelet) that permit one to develop, using wavelet techniques, linguistically interpretable fuzzy systems from data. The book also introduces the reader to wavelet-based genetic algorithms and multiresolution search. A special place is given to methods that have been implemented in real world applications, particularly the different techniques combining fuzzy logic or neural networks with wavelet theory.




Wavelets


Book Description

This long-awaited update of Meyer's Wavelets: Algorithms and Applications includes completely new chapters on four topics: wavelets and the study of turbulence, wavelets and fractals (which includes an analysis of Riemann's nondifferentiable function), data compression, and wavelets in astronomy. The chapter on data compression was the original motivation for this revised edition, and it contains up-to-date information on the interplay between wavelets and nonlinear approximation. The other chapters have been rewritten with comments, references, historical notes, and new material. Four appendices have been added: a primer on filters, key results (with proofs) about the wavelet transform, a complete discussion of a counterexample to the Marr-Mallat conjecture on zero-crossings, and a brief introduction to H?lder and Besov spaces. In addition, all of the figures have been redrawn, and the references have been expanded to a comprehensive list of over 260 entries. The book includes several new results that have not appeared elsewhere.




Wavelets In Soft Computing (Second Edition)


Book Description

The comprehensive compendium furnishes a quick and efficient entry point to many multiresolution techniques and facilitates the transition from an idea into a real project. It focuses on methods combining several soft computing techniques (fuzzy logic, neural networks, genetic algorithms) in a multiresolution framework.Illustrated with numerous vivid examples, this useful volume gives the reader the necessary theoretical background to decide which methods suit his/her needs.New materials and applications for multiresolution analysis are added, including notable research topics such as deep learning, graphs, and network analysis.