Contemporary Research Methods in Neuroanatomy


Book Description

As a source of information on neuroanatomical research methods this Volume is not without precedent. In 1957, at the initiative of Dr. W. F. Windle, a conference was held at the National Institutes of Health, the proceedings of which, edited by Dr. Windle and published by C. C. Thomas under the title "New Research Tech niques of Neuroanatomy", rapidly became something like a standard reference in the field of Neuromorphology. The present editors were emboldened to seek support for a second expose of contemporary research methods in Neuroanatomy by the success of this earlier publication, as well as by the consideration that the years elapsed since its appearance have been, perhaps, more productive of new research methods and strategies in Neuroanatomy than were any dozen consecutive years since the golden decades of the 1870's and 1880's. The decision, which methods to include in this conference, has been a difficult one. For reasons of space alone it would have been impossible to do equal justice to techniques approaching the brain as a neuronal system, the brain as a tissue, or the neuron as a cell. As a brief inspection of the contents of this volume will show, the weight of choice fell upon the first of these alternatives. The reader will find, further more, that not all of the book is devoted to new methods in the strict sense.




Neuroanatomical Research Techniques


Book Description

Neuroanatomical Research Techniques discusses developments in major neuroanatomical research techniques. The book is organized into four parts. Part I deals generally with the preparation and study of brain tissue. It includes a chapter on the microscope, discussing optical magnification, limitations of microscopy, and optical contrasting methods. Other chapters summarize basic techniques for tissue preparation and sectioning; present guidelines for a number of standard, but essential, staining procedures; and present sophisticated and contemporary computer techniques that are proving to be invaluable as neuroanatomy evolves from a qualitative to a quantitative discipline. Part II deals with techniques often used for the study of normal tissue. These include the Golgi method, fluorescence histochemistry, techniques for staining single neurons, and the use of the electron microscope. Part III presents techniques for studying intrinsic connections of the nervous system. These include techniques for silver impregnation of degenerating fibers; autoradiographic technique for studying axonal projections; and somatopetal movement of horseradish peroxidase as a tool for studying connections and neuron morphology. Part IV discusses the interpretation of results from neuroanatomical research techniques and presents examples of the applications of neuroanatomical methods to major problems in physiological psychology.




Guide to Research Techniques in Neuroscience


Book Description

Modern neuroscience research is inherently multidisciplinary, with a wide variety of cutting edge new techniques to explore multiple levels of investigation. This Third Edition of Guide to Research Techniques in Neuroscience provides a comprehensive overview of classical and cutting edge methods including their utility, limitations, and how data are presented in the literature. This book can be used as an introduction to neuroscience techniques for anyone new to the field or as a reference for any neuroscientist while reading papers or attending talks. - Nearly 200 updated full-color illustrations to clearly convey the theory and practice of neuroscience methods - Expands on techniques from previous editions and covers many new techniques including in vivo calcium imaging, fiber photometry, RNA-Seq, brain spheroids, CRISPR-Cas9 genome editing, and more - Clear, straightforward explanations of each technique for anyone new to the field - A broad scope of methods, from noninvasive brain imaging in human subjects, to electrophysiology in animal models, to recombinant DNA technology in test tubes, to transfection of neurons in cell culture - Detailed recommendations on where to find protocols and other resources for specific techniques - "Walk-through" boxes that guide readers through experiments step-by-step




Atlas of Human Brain Connections


Book Description

One of the major challenges of modern neuroscience is to define the complex pattern of neural connections that underlie cognition and behaviour. This atlas capitalises on novel diffusion MRI tractography methods to provide a comprehensive overview of connections derived from virtual in vivo tractography dissections of the human brain.




Computational Neuroanatomy


Book Description

In Computational Neuroanatomy: Principles and Methods, the path-breaking investigators who founded the field review the principles and key techniques available to begin the creation of anatomically accurate and complete models of the brain. Combining the vast, data-rich field of anatomy with the computational power of novel hardware, software, and computer graphics, these pioneering investigators lead the reader from the subcellular details of dendritic branching and firing to system-level assemblies and models.




Modern Techniques in Neuroscience Research


Book Description

An overview of the techniques used in modern neuroscience research with the emphasis on showing how different techniques can optimally be combined in the study of problems that arise at some levels of nervous system organization. This is essentially a working tool for the scientist in the laboratory and clinic, providing detailed step-by-step protocols with tips and recommendations. Most chapters and protocols are organized such that they can be used independently, while cross-references between the chapters, a glossary, a list of suppliers and appendices provide further help.




Neuroanatomical Tract-Tracing


Book Description

The first two editions of this title had a tremendous impact in neuroscience. Between the Second edition in 1989 and today, there has been an explosion of information in the field, including advances in molecular techniques, such as genomics and proteomics, which have become increasing important in neuroscience. A renaissance in fluorescence has occurred, driven by the development of new probes, new microscopes, live imagers, and computer processing. The introduction of new markers has enormously stimulated the field, moving it from tissue culture to neurophysiology to functional MRI techniques.







Neuroanatomical Tract-Tracing Methods


Book Description




Neuroanatomical Techniques


Book Description

Most neurobiological research is performed on vertebrates, and it is only natural that most texts describing neuroanatomical methods refer almost exclusively to this Phylum. Nevertheless, in recent years insects have been studied intensively and are becoming even more popular in some areas of research. They have advantages over vertebrates with respect to studying genetics of neuronal development and with respect to studying many aspects of integration by uniquely identifiable nerve cells. Insect central nervous system is characterized by its compactness and the rather large number of nerve cells in a structure so small. But despite their size, parts of the insect eNS bear structural comparisons with parts of vertebrate eNS. This applies particularly to the organization of the thoracic ganglia (and spinal cord), to the insect and vertebrate visual sys tems and, possibly, to parts of the olfactory neuropils. The neurons that make up these areas in insects are often large enough to be impaled by microelectrodes and can be injected with dyes. Added to advantages of using a small eNS, into which the sensory periphery is precisely mapped, are the many aspects of insect behaviour whose components can be quan titized and which may find both structural and functional correlates within clearly defined regions of neuropil. Together, these various features make the insect eNS a rewarding object for study. This volume is the first of two that describe both classic and recent methods for neuroanatomical research on insect eNS.