Contextual Image Classification


Book Description

What is Contextual Image Classification A method of classification that is based on the contextual information contained in images is referred to as contextual image classification. This method falls under the category of pattern recognition in computer vision. A "contextual" approach is one that focuses on the relationship between the pixels that are in close proximity to one another, which is also referred to as the neighborhood. The classification of the photographs by the utilization of the contextual information is the objective of this approach. How you will benefit (I) Insights, and validations about the following topics: Chapter 1: Contextual image classification Chapter 2: Pattern recognition Chapter 3: Gaussian process Chapter 4: LPBoost Chapter 5: One-shot learning (computer vision) Chapter 6: Least-squares support vector machine Chapter 7: Fraunhofer diffraction equation Chapter 8: Symmetry in quantum mechanics Chapter 9: Bayesian hierarchical modeling Chapter 10: Paden-Kahan subproblems (II) Answering the public top questions about contextual image classification. (III) Real world examples for the usage of contextual image classification in many fields. Who this book is for Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Contextual Image Classification.




Hyperspectral Image Analysis


Book Description

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.







Dictionary of Computer Vision and Image Processing


Book Description

Written by leading researchers, the 2nd Edition of the Dictionary of Computer Vision & Image Processing is a comprehensive and reliable resource which now provides explanations of over 3500 of the most commonly used terms across image processing, computer vision and related fields including machine vision. It offers clear and concise definitions with short examples or mathematical precision where necessary for clarity that ultimately makes it a very usable reference for new entrants to these fields at senior undergraduate and graduate level, through to early career researchers to help build up knowledge of key concepts. As the book is a useful source for recent terminology and concepts, experienced professionals will also find it a valuable resource for keeping up to date with the latest advances. New features of the 2nd Edition: Contains more than 1000 new terms, notably an increased focus on image processing and machine vision terms; Includes the addition of reference links across the majority of terms pointing readers to further information about the concept under discussion so that they can continue to expand their understanding; Now available as an eBook with enhanced content: approximately 50 videos to further illustrate specific terms; active cross-linking between terms so that readers can easily navigate from one related term to another and build up a full picture of the topic in question; and hyperlinked references to fully embed the text in the current literature.




Image Processing, Analysis and Machine Vision


Book Description

Image Processing, Analysis and Machine Vision represent an exciting part of modern cognitive and computer science. Following an explosion of inter est during the Seventies, the Eighties were characterized by the maturing of the field and the significant growth of active applications; Remote Sensing, Technical Diagnostics, Autonomous Vehicle Guidance and Medical Imaging are the most rapidly developing areas. This progress can be seen in an in creasing number of software and hardware products on the market as well as in a number of digital image processing and machine vision courses offered at universities world-wide. There are many texts available in the areas we cover - most (indeed, all of which we know) are referenced somewhere in this book. The subject suffers, however, from a shortage of texts at the 'elementary' level - that appropriate for undergraduates beginning or completing their studies of the topic, or for Master's students - and the very rapid developments that have taken and are still taking place, which quickly age some of the very good text books produced over the last decade or so. This book reflects the authors' experience in teaching one and two semester undergraduate and graduate courses in Digital Image Processing, Digital Image Analysis, Machine Vision, Pattern Recognition and Intelligent Robotics at their respective institutions.




Signal and Image Processing for Remote Sensing


Book Description

Most data from satellites are in image form, thus most books in the remote sensing field deal exclusively with image processing. However, signal processing can contribute significantly in extracting information from the remotely sensed waveforms or time series data. Pioneering the combination of the two processes, Signal and Image Processing for Re




Land Cover Classification of Remotely Sensed Images


Book Description

The book introduces two domains namely Remote Sensing and Digital Image Processing. It discusses remote sensing, texture, classifiers, and procedures for performing the texture-based segmentation and land cover classification. The first chapter discusses the important terminologies in remote sensing, basics of land cover classification, types of remotely sensed images and their characteristics. The second chapter introduces the texture and a detailed literature survey citing papers related to texture analysis and image processing. The third chapter describes basic texture models for gray level images and multivariate texture models for color or remotely sensed images with relevant Matlab source codes. The fourth chapter focuses on texture-based classification and texture-based segmentation. The Matlab source codes for performing supervised texture based segmentation using basic texture models and minimum distance classifier are listed. The fifth chapter describes supervised and unsupervised classifiers. The experimental results obtained using a basic texture model (Uniform Local Binary Pattern) with the classifiers described earlier are discussed through the relevant Matlab source codes. The sixth chapter describes land cover classification procedure using multivariate (statistical and spectral) texture models and minimum distance classifier with Matlab source codes. A few performance metrics are also explained. The seventh chapter explains how texture based segmentation and land cover classification are performed using the hidden Markov model with relevant Matlab source codes. The eighth chapter gives an overview of spatial data analysis and other existing land cover classification methods. The ninth chapter addresses the research issues and challenges associated with land cover classification using textural approaches. This book is useful for undergraduates in Computer Science and Civil Engineering and postgraduates who plan to do research or project work in digital image processing. The book can serve as a guide to those who narrow down their research to processing remotely sensed images. It addresses a wide range of texture models and classifiers. The book not only guides but aids the reader in implementing the concepts through the Matlab source codes listed. In short, the book will be a valuable resource for growing academicians to gain expertise in their area of specialization and students who aim at gaining in-depth knowledge through practical implementations. The exercises given under texture based segmentation (excluding land cover classification exercises) can serve as lab exercises for the undergraduate students who learn texture based image processing.




Handbook of Image Engineering


Book Description

Image techniques have been developed and implemented for various purposes, and image engineering (IE) is a rapidly evolving, integrated discipline comprising the study of all the different branches of image techniques, and encompassing mathematics, physics, biology, physiology, psychology, electrical engineering, computer science and automation. Advances in the field are also closely related to the development of telecommunications, biomedical engineering, remote sensing, surveying and mapping, as well as document processing and industrial applications. IE involves three related and partially overlapping groups of image techniques: image processing (IP) (in its narrow sense), image analysis (IA) and image understanding (IU), and the integration of these three groups makes the discipline of image engineering an important part of the modern information era. This is the first handbook on image engineering, and provides a well-structured, comprehensive overview of this new discipline. It also offers detailed information on the various image techniques. It is a valuable reference resource for R&D professional and undergraduate students involved in image-related activities.




Classification Methods for Remotely Sensed Data


Book Description

The third edition of the bestselling Classification Methods for Remotely Sensed Data covers current state-of-the-art machine learning algorithms and developments in the analysis of remotely sensed data. This book is thoroughly updated to meet the needs of readers today and provides six new chapters on deep learning, feature extraction and selection, multisource image fusion, hyperparameter optimization, accuracy assessment with model explainability, and object-based image analysis, which is relatively a new paradigm in image processing and classification. It presents new AI-based analysis tools and metrics together with ongoing debates on accuracy assessment strategies and XAI methods. New in this edition: Provides comprehensive background on the theory of deep learning and its application to remote sensing data. Includes a chapter on hyperparameter optimization techniques to guarantee the highest performance in classification applications. Outlines the latest strategies and accuracy measures in accuracy assessment and summarizes accuracy metrics and assessment strategies. Discusses the methods used for explaining inherent structures and weighing the features of ML and AI algorithms that are critical for explaining the robustness of the models. This book is intended for industry professionals, researchers, academics, and graduate students who want a thorough and up-to-date guide to the many and varied techniques of image classification applied in the fields of geography, geospatial and earth sciences, electronic and computer science, environmental engineering, etc.




Image Processing for Remote Sensing


Book Description

Edited by leaders in the field, with contributions by a panel of experts, Image Processing for Remote Sensing explores new and unconventional mathematics methods. The coverage includes the physics and mathematical algorithms of SAR images, a comprehensive treatment of MRF-based remote sensing image classification, statistical approaches for