Continuous Lattices and Domains


Book Description

Table of contents




Lattice Theory: Special Topics and Applications


Book Description

George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Grätzer.




Encyclopedia of General Topology


Book Description

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms




High Performance Networking, Computing, and Communication Systems


Book Description

This book constitutes the refereed post-proceedings of the Second International Conference on High Performance Networking, Computing, and Communication systems, ICHCC 2011, held in Singapore in May 2011. The conference was held together with the Second International Conference on Theoretical and Mathematical Foundations of Computer Science, ICTMF 2011, which proceedings are published in CCIS 164. The 84 revised selected papers presented were carefully reviewed and selected for inclusion in the book. The topics covered range from computational science, engineering and technology to digital signal processing, and computational biology to game theory, and other related topices.




Formal Concept Analysis


Book Description

This book constitutes the proceedings of the 15th International Conference on Formal Concept Analysis, ICFCA 2019, held in Frankfurt am Main, Germany, in June 2019. The 15 full papers and 5 short papers presented in this volume were carefully reviewed and selected from 36 submissions. The book also contains four invited contributions in full paper length. The field of Formal Concept Analysis (FCA) originated in the 1980s in Darmstadt as a subfield of mathematical order theory, with prior developments in other research groups. Its original motivation was to consider complete lattices as lattices of concepts, drawing motivation from philosophy and mathematics alike. FCA has since then developed into a wide research area with applications much beyond its original motivation, for example in logic, data mining, learning, and psychology.




Non-Hausdorff Topology and Domain Theory


Book Description

Introduces the basic concepts of topology with an emphasis on non-Hausdorff topology, which is crucial for theoretical computer science.




Domains and Processes


Book Description

Domain theory is a rich interdisciplinary area at the intersection of logic, computer science, and mathematics. This volume contains selected papers presented at the International Symposium on Domain Theory which took place in Shanghai in October 1999. Topics of papers range from the encounters between topology and domain theory, sober spaces, Lawson topology, real number computability and continuous functionals to fuzzy modelling, logic programming, and pi-calculi. This book is a valuable reference for researchers and students interested in this rapidly developing area of theoretical computer science.




Labelled Markov Processes


Book Description

Labelled Markov processes are probabilistic versions of labelled transition systems with continuous state spaces. The book covers basic probability and measure theory on continuous state spaces and then develops the theory of LMPs.The main topics covered are bisimulation, the logical characterization of bisimulation, metrics and approximation theory. An unusual feature of the book is the connection made with categorical and domain theoretic concepts./a




Continuous Lattices and Their Applications


Book Description

This book contains articles on the notion of a continuous lattice, which has its roots in Dana Scott's work on a mathematical theory of computation, presented at a conference on categorical and topological aspects of continuous lattices held in 1982.




A Compendium of Continuous Lattices


Book Description

A mathematics book with six authors is perhaps a rare enough occurrence to make a reader ask how such a collaboration came about. We begin, therefore, with a few words on how we were brought to the subject over a ten-year period, during part of which time we did not all know each other. We do not intend to write here the history of continuous lattices but rather to explain our own personal involvement. History in a more proper sense is provided by the bibliography and the notes following the sections of the book, as well as by many remarks in the text. A coherent discussion of the content and motivation of the whole study is reserved for the introduction. In October of 1969 Dana Scott was lead by problems of semantics for computer languages to consider more closely partially ordered structures of function spaces. The idea of using partial orderings to correspond to spaces of partially defined functions and functionals had appeared several times earlier in recursive function theory; however, there had not been very sustained interest in structures of continuous functionals. These were the ones Scott saw that he needed. His first insight was to see that - in more modern terminology - the category of algebraic lattices and the (so-called) Scott-continuous functions is cartesian closed.