Continuous Symmetries, Lie Algebras, Differential Equations, and Computer Algebra


Book Description

This book is a comprehensive introduction to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. It is suitable for students and research workers whose main interest lies in finding solutions to differential equations. It therefore caters for readers primarily interested in applied mathematics and physics rather than pure mathematics.The book provides an application-orientated text that is reasonably self-contained. A large number of worked examples have been included to help readers working independently of a teacher. The advance of algebraic computation has made it possible to write programs for the tedious calculations in this research field, and thus the book also makes a survey of computer algebra packages.




Continuous Symmetries, Lie Algebras, Differential Equations And Computer Algebra (2nd Edition)


Book Description

This textbook comprehensively introduces students and researchers to the application of continuous symmetries and their Lie algebras to ordinary and partial differential equations. Covering all the modern techniques in detail, it relates applications to cutting-edge research fields such as Yang-Mills theory and string theory.Aimed at readers in applied mathematics and physics rather than pure mathematics, the material is ideally suited to students and researchers whose main interest lies in finding solutions to differential equations and invariants of maps.A large number of worked examples and challenging exercises help readers to work independently of teachers, and by including SymbolicC++ implementations of the techniques in each chapter, the book takes full advantage of the advancements in algebraic computation.Twelve new sections have been added in this edition, including: Haar measure, Sato's theory and sigma functions, universal algebra, anti-self dual Yang-Mills equation, and discrete Painlevé equations.




Applications of Lie Groups to Differential Equations


Book Description

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.




Symmetry Methods for Differential Equations


Book Description

This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.




Lie Groups, Physics, and Geometry


Book Description

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.







Applications of Lie Groups to Difference Equations


Book Description

Intended for researchers, numerical analysts, and graduate students in various fields of applied mathematics, physics, mechanics, and engineering sciences, Applications of Lie Groups to Difference Equations is the first book to provide a systematic construction of invariant difference schemes for nonlinear differential equations. A guide to methods




CRC Handbook of Lie Group Analysis of Differential Equations


Book Description

Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.







Symmetries and Differential Equations


Book Description

A major portion of this book discusses work which has appeared since the publication of the book Similarity Methods for Differential Equations, Springer-Verlag, 1974, by the first author and J.D. Cole. The present book also includes a thorough and comprehensive treatment of Lie groups of tranformations and their various uses for solving ordinary and partial differential equations. No knowledge of group theory is assumed. Emphasis is placed on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This book should be particularly suitable for physicists, applied mathematicians, and engineers. Almost all of the examples are taken from physical and engineering problems including those concerned with heat conduction, wave propagation, and fluid flows. A preliminary version was used as lecture notes for a two-semester course taught by the first author at the University of British Columbia in 1987-88 to graduate and senior undergraduate students in applied mathematics and physics. Chapters 1 to 4 encompass basic material. More specialized topics are covered in Chapters 5 to 7.