Continuum Mechanics


Book Description

Moving on to derivation of the governing equations, this book presents applications in the areas of linear and nonlinear elasticity.




Introduction to Continuum Mechanics


Book Description

Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive equations for viscoelastic fluids, and finite deformation theory), this popular introduction to modern continuum mechanics has been fully revised to serve a dual purpose: for introductory courses in undergraduate engineering curricula, and for beginning graduate courses.




Foundations and Applications of Mechanics: Fluid mechanics


Book Description

Foundations and Applications of Mechanics: Volume II, Fluid Mechanics shows how suitable approximations such as ideal fluid flow model, boundary layer methods, and the acoustic approximation, can help solve problems of practical importance. The author proceeds from the general to the particular, making it clear at each stage what assumptions have been made to obtain a particular approximation. In his discussion of compressible fluids, Jog steers away from using gas tables and emphasizes obtaining solutions by numerical techniques - an approach more amenable to computer solutions. He discusses the control volume and the differential equation forms of governing equations in detail and uses examples to demonstrate the advantages and shortcomings of each approach.




Continuum Mechanics: Volume 1


Book Description

Continuum mechanics studies the foundations of deformable body mechanics from a mathematical perspective. It also acts as a base upon which other applied areas such as solid mechanics and fluid mechanics are developed. This book discusses some important topics, which have come into prominence in the latter half of the twentieth century, such as material symmetry, frame-indifference and thermomechanics. The study begins with the necessary mathematical background in the form of an introduction to tensor analysis followed by a discussion on kinematics, which deals with purely geometrical notions such as strain and rate of deformation. Moving on to derivation of the governing equations, the book also presents applications in the areas of linear and nonlinear elasticity. In addition, the volume also provides a mathematical explanation to the axioms and laws of deformable body mechanics, and its various applications in the field of solid mechanics.




Continuum Mechanics


Book Description

Undergraduate text offers an analysis of deformation and stress, covers laws of conservation of mass, momentum, and energy, and surveys the formulation of mechanical constitutive equations. 1992 edition.




Continuum Mechanics


Book Description

Written in response to the dearth of practical and meaningful textbooks in the field of fundamental continuum mechanics, this comprehensive treatment offers students and instructors an immensely useful tool. Its 115 solved problems and exercises not only provide essential practice but also systematically advance the understanding of vector and tensor theory, basic kinematics, balance laws, field equations, jump conditions, and constitutive equations. Readers follow clear, formally precise steps through the central ideas of classical and modern continuum mechanics, expressed in a common, efficient notation that fosters quick comprehension and renders these concepts familiar when they reappear in other contexts. Completion of this brief course results in a unified basis for work in fluid dynamics and the mechanics of solid materials, a foundation of particular value to students of mathematics and physics, those studying continuum mechanics at an intermediate or advanced level, and postgraduate students in the applied sciences. "Should be excellent in its intended function as a problem book to accompany a lecture course." — Quarterly of Applied Math.




Continuum Mechanics


Book Description

A detailed and self-contained text written for beginners, Continuum Mechanics offers concise coverage of the basic concepts, general principles, and applications of continuum mechanics. Without sacrificing rigor, the clear and simple mathematical derivations are made accessible to a large number of students with little or no previous background in solid or fluid mechanics. With the inclusion of more than 250 fully worked-out examples and 500 worked exercises, this book is certain to become a standard introductory text for students as well as an indispensable reference for professionals. - Provides a clear and self-contained treatment of vectors, matrices, and tensors specifically tailored to the needs of continuum mechanics - Develops the concepts and principles common to all areas in solid and fluid mechanics with a common notation and terminology - Covers the fundamentals of elasticity theory and fluid mechanics




A First Course in Continuum Mechanics


Book Description

The modeling and simulation of fluids, solids and other materials with significant coupling and thermal effects is becoming an increasingly important area of study in applied mathematics and engineering. Necessary for such studies is a fundamental understanding of the basic principles of continuum mechanics and thermodynamics. This book is a clear introduction to these principles. It is designed for a one- or two-quarter course for advanced undergraduate and beginning graduate students in the mathematical and engineering sciences, and is based on over nine years of teaching experience. It is also sufficiently self-contained for use outside a classroom environment. Prerequisites include a basic knowledge of linear algebra, multivariable calculus, differential equations and physics. The authors begin by explaining tensor algebra and calculus in three-dimensional Euclidean space. Using both index and coordinate-free notation, they introduce the basic axioms of continuum mechanics pertaining to mass, force, motion, temperature, energy and entropy, and the concepts of frame-indifference and material constraints. They devote four chapters to different theories of fluids and solids, and, unusually at this level, they consider both isothermal and thermal theories in detail. The book contains a wealth of exercises that support the theory and illustrate various applications. Full solutions to odd-numbered exercises are given at the end of each chapter and a complete solutions manual for all exercises is available to instructors upon request. Each chapter also contains a bibliography with references covering different presentations, further applications and numerical aspects of the theory. Book jacket.




Mathematics Applied to Continuum Mechanics


Book Description

This classic work gives an excellent overview of the subject, with an emphasis on clarity, explanation, and motivation. Extensive exercises and a valuable section containing hints and answers make this an excellent text for both classroom use and independent study.




Continuum Mechanics and Theory of Materials


Book Description

The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.