Avalanche Dynamics


Book Description

Avalanches, mudflows and landslides are common and natural phenomena that occur in mountainous regions. With an emphasis on snow avalanches, this book provides a survey and discussion about the motion of avalanche-like flows from initiation to run out. An important aspect of this book is the formulation and investigation of a simple but appropriate continuum mechanical model for the realistic prediction of geophysical flows of granular material.







The Avalanche Handbook


Book Description

Technical yet accessible, The Avalanche Handbook, 3rd Edition, covers the formation, character, effects, and control of avalanches; rescue techniques; and research on understanding and surviving avalanches. Illustrated with nearly 200 updated illustrations, photos and examples, the revised edition offers exhaustive information on contributing weather and climate factors, snowpack analysis, the newest transceiver search techniques, and preventative and protective measures, including avalanche zoning and control. It contains new information on the unique characteristics of alpine snow, snow slab instability, terrain variables, skier triggering of avalanches, and the nature of avalanche motion. Plus brand-new chapters on the elements of backcountry avalanche forecasting and the decision-making process.




Avalanche Handbook


Book Description

Deals comprehensively and practically with effects, causes and behaviour of avalanches, protection of ski areas, highways and villages, and safety and rescue.




Earth Resources


Book Description




Global Sensitivity Analysis


Book Description

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.




Basics and Trends in Sensitivity Analysis: Theory and Practice in R


Book Description

This book provides an overview of global sensitivity analysis methods and algorithms, including their theoretical basis and mathematical properties. The authors use a practical point of view and real case studies as well as numerous examples, and applications of the different approaches are illustrated throughout using R code to explain their usage and usefulness in practice. Basics and Trends in Sensitivity Analysis: Theory and Practice in R covers a lot of material, including theoretical aspects of Sobol’ indices as well as sampling-based formulas, spectral methods, and metamodel-based approaches for estimation purposes; screening techniques devoted to identifying influential and noninfluential inputs; variance-based measures when model inputs are statistically dependent (and several other approaches that go beyond variance-based sensitivity measures); and a case study in R related to a COVID-19 epidemic model where the full workflow of sensitivity analysis combining several techniques is presented. This book is intended for engineers, researchers, and undergraduate students who use complex numerical models and have an interest in sensitivity analysis techniques and is appropriate for anyone with a solid mathematical background in basic statistical and probability theories who develops and uses numerical models in all scientific and engineering domains.




Time Series and Dynamic Models


Book Description

In this book Christian Gourieroux and Alain Monfort provide an up-to-date and comprehensive analysis of modern time series econometrics. They have succeeded in synthesising in an organised and integrated way a broad and diverse literature. While the book does not assume a deep knowledge of economics, one of its most attractive features is the close attention it pays to economic models and phenomena throughout. The coverage represents a major reference tool for graduate students, researchers and applied economists. The book is divided into four sections. Section one gives a detailed treatment of classical seasonal adjustment or smoothing methods. Section two provides a thorough coverage of various mathematical tools. Section three is the heart of the book, and is devoted to a range of important topics including causality, exogeneity shocks, multipliers, cointegration and fractionally integrated models. The final section describes the main contribution of filtering and smoothing theory to time series econometric problems.




Bayesian Theory


Book Description

This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics