Advanced Design and Control of Active Power Filters


Book Description

Active power filters can be used for harmonic elimination, reactive current compensation, and clean delivery of power. The basic principle of APF is to produce a compensation current which is of the same amplitude and opposite phase with harmonic currents and to eliminate unexpected harmonic currents. The shunt APF could compensate the harmonics generated by the load current through injecting compensation current to the grid. This book will have a large potential readership, ranging from scientists and students of wide disciplines to electrical engineers. It is an essential read for engineers and scientists working in the fields of power electronics and active power filters and advanced control technologies. It will also be of interest to senior undergraduate and graduate students as well as aerospace, mechanical, electrical design engineers who want to acquire some background in the advanced control of active power filters. On the science side, the book will provide important new information to control engineers, electrical engineers, and scientists. The new data and insights will enable students to have a better grasp of the complicated advanced control with application to active power filters. In short, this book will mark a milestone of an integrative approach that is needed to better understand and better manage the emerging power electronics world.




Uninterruptible Power Supplies and Active Filters


Book Description

As industry power demands become increasingly sensitive, power quality distortion becomes a critical issue. The recent increase in nonlinear loads drawing non-sinusoidal currents has seen the introduction of various tools to manage the clean delivery of power. Power demands of medical facilities, data storage and information systems, emergency equipment, etc. require uninterrupted, high quality power. Uninterruptible power supplies (UPS) and active filters provide this delivery. The first to treat these power management tools together in a comprehensive discussion, Uninterruptible Power Supplies and Active Filters compares the similarities of UPS, active filters, and unified power quality conditioners. The book features a description of low-cost and reduced-parts configurations presented for the first time in any publication, along with a presentation of advanced digital controllers. These configurations are vital as industries seek to reduce the cost of power management in their operations. As this field of power management technology continues to grow, industry and academia will come to rely upon the comprehensive treatment found within this book. Industrial engineers in power quality, circuits and devices, and aerospace engineers as well as graduate students will find this a complete and insightful resource for studying and applying the tools of this rapidly developing field.




Active Power Line Conditioners


Book Description

Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids, this book helps define power terms according to the IEEE Standard 1459. Detailed chapters discuss instantaneous reactive power theory and the theoretical framework that enabled the practical development of APLCs, in both its original and modified formulations, along with other proposals. Different APLCs configurations for load compensation are explored, including shunt APF, series APF, hybrid APF, and shunt combined with series APF, also known as UPQC. The book includes simulation examples carefully developed and ready for download from the book's companion website, along with different case studies where real APLCs have been developed. Finally, the new paradigm brought by the emergence of distribution systems with dispersed generation, such as the use of small power units based on gas technology or renewable energy sources, is discussed in a chapter where mitigation technologies are addressed in a distributed environment. - Combines the development of theories, control strategies, and the most widespread practical implementations of active power line conditioners, along with the most recent new approaches - Details updated and practical content on periodic disturbances mitigation technologies with special emphasis on distributed generation systems - Includes over 28 practical simulation examples in Matlab-Simulink which are available for download at the book's companion website, with 4 reproducible case studies from real APLCs




Instantaneous Power Theory and Applications to Power Conditioning


Book Description

This book covers instantaneous power theory as well as the importance of design of shunt, series, and combined shunt-series power active filters and hybrid passive-active power filters Illustrates pioneering applications of the p-q theory to power conditioning, which highlights distinct differences from conventional theories Explores p-q-r theory to give a new method of analyzing the different powers in a three-phase circuit Provides exercises at the end of many chapters that are unique to the second edition




Power Quality


Book Description

Maintaining a stable level of power quality in the distribution network is a growing challenge due to increased use of power electronics converters in domestic, commercial and industrial sectors. Power quality deterioration is manifested in increased losses; poor utilization of distribution systems; mal-operation of sensitive equipment and disturbances to nearby consumers, protective devices, and communication systems. However, as the energy-saving benefits will result in increased AC power processed through power electronics converters, there is a compelling need for improved understanding of mitigation techniques for power quality problems. This timely book comprehensively identifies, classifies, analyses and quantifies all associated power quality problems, including the direct integration of renewable energy sources in the distribution system, and systematically delivers mitigation techniques to overcome these problems. Key features: • Emphasis on in-depth learning of the latest topics in power quality extensively illustrated with waveforms and phasor diagrams. • Essential theory supported by solved numerical examples, review questions, and unsolved numerical problems to reinforce understanding. • Companion website contains solutions to unsolved numerical problems, providing hands-on experience. Senior undergraduate and graduate electrical engineering students and instructors will find this an invaluable resource for education in the field of power quality. It will also support continuing professional development for practicing engineers in distribution and transmission system operators.




Modeling and Control of Power Electronics Converter System for Power Quality Improvements


Book Description

Modeling and Control of Power Electronics Converter Systems for Power Quality Improvements provides grounded theory for the modeling, analysis and control of different converter topologies that improve the power quality of mains. Intended for researchers and practitioners working in the field, topics include modeling equations and the state of research to improve power quality converters. By presenting control methods for different converter topologies and aspects related to multi-level inverters and specific analysis related to the AC interface of drives, the book helps users by putting a particular emphasis on different control algorithms that enhance knowledge and research work. Present In-depth coverage of modeling and control methods for different converter topology Includes a particular emphasis on different control algorithms to give readers an easier understanding Provides a results and discussion chapter and MATLAB simulation to support worked examples and real-life application scenarios




Applications of Artificial Intelligence in Electrical Engineering


Book Description

Artificial intelligence is increasingly finding its way into industrial and manufacturing contexts. The prevalence of AI in industry from stock market trading to manufacturing makes it easy to forget how complex artificial intelligence has become. Engineering provides various current and prospective applications of these new and complex artificial intelligence technologies. Applications of Artificial Intelligence in Electrical Engineering is a critical research book that examines the advancing developments in artificial intelligence with a focus on theory and research and their implications. Highlighting a wide range of topics such as evolutionary computing, image processing, and swarm intelligence, this book is essential for engineers, manufacturers, technology developers, IT specialists, managers, academicians, researchers, computer scientists, and students.




Power Quality Issues


Book Description

Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text: Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerations Compares shunt active filter (SHAF) control strategies for extracting three-phase reference currents, evaluating their performance under a number of source voltage conditions using a proportional-integral (PI) controller Presents PI controller-based SHAF instantaneous active and reactive power (p-q) and instantaneous active and reactive current (Id-Iq) control strategies, supplying detailed MATLAB®/Simulink simulation results Proposes SHAF control strategies using type 1 and type 2 fuzzy logic controllers (FLCs) with different fuzzy membership functions (MFs), analyzing their harmonic mitigation and DC link voltage regulation Verifies the proposed type 2 FLC-based SHAF control strategies with trapezoidal, triangular, and Gaussian fuzzy MFs using RT-LAB, a real-time digital simulation software from OPAL-RT Technologies Power Quality Issues: Current Harmonics is a useful resource for those tackling electrical power quality challenges. The compensation techniques described in this book alleviate harmonic issues that can distort voltage waveforms, fry a building’s wiring, trigger nuisance tripping, overheat transformer units, and cause random end-user equipment failure.




Digital Signal Processing in Power Electronics Control Circuits


Book Description

Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. This book bridges the gap between power electronics and DSP. The following realizations of digital control circuits are considered: digital signal processors, microprocessors, microcontrollers, programmable digital circuits. Discussed in this book is signal processing, starting from analog signal acquisition, through its conversion to digital form, methods of its filtration and separation, and ending with pulse control of output power transistors. The book is focused on two applications for the considered methods of digital signal processing: an active power filter and a digital class D power amplifier. The major benefit to readers is the acquisition of specific knowledge concerning discussions on the processing of signals from voltage or current sensors using a digital signal processor and to the signals controlling the output inverter transistors. Included are some Matlab examples for illustration of the considered problems.




Microgrid Technologies


Book Description

Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.