Control System Dynamics


Book Description

A textbook for engineers on the basic techniques in the analysis and design of automatic control systems.




Control System Dynamics


Book Description

Automatic control systems have become essential features in virtually every area of technology, from machine tools to aerospace vehicles. This book is a comprehensive, clearly written introduction to automatic control engineering. The author begins with the fundamentals of modeling mechanical, electrical, and electromechanical systems in the state variable format. The emphasis is on classical feedback control theory and design, and their application to practical electromechanical and aerospace problems. Following a careful grounding in classical control theory, the author introduces modern control theory, including digital control and nonlinear system analysis. Over 230 problems help the reader apply principles discussed in the text to practical engineering situations. Engineering students and practicing engineers will find what they need to know about control system analysis and design in this valuable text. Solutions manual available.




Advances in System Dynamics and Control


Book Description

Complex systems are pervasive in many areas of science. With the increasing requirement for high levels of system performance, complex systems has become an important area of research due to its role in many industries. Advances in System Dynamics and Control provides emerging research on the applications in the field of control and analysis for complex systems, with a special emphasis on how to solve various control design and observer design problems, nonlinear systems, interconnected systems, and singular systems. Featuring coverage on a broad range of topics, such as adaptive control, artificial neural network, and synchronization, this book is an important resource for engineers, professionals, and researchers interested in applying new computational and mathematical tools for solving the complicated problems of mathematical modeling, simulation, and control.




The Dynamics of Control


Book Description

This new text/reference is an excellent resource for the foundations and applications of control theory and nonlinear dynamics. All graduates, practitioners, and professionals in control theory, dynamical systems, perturbation theory, engineering, physics and nonlinear dynamics will find the book a rich source of ideas, methods and applications. With its careful use of examples and detailed development, it is suitable for use as a self-study/reference guide for all scientists and engineers.




Nonlinear Control Systems and Power System Dynamics


Book Description

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.




Dynamic Systems And Control With Applications


Book Description

In recent years significant applications of systems and control theory have been witnessed in diversed areas such as physical sciences, social sciences, engineering, management and finance. In particular the most interesting applications have taken place in areas such as aerospace, buildings and space structure, suspension bridges, artificial heart, chemotherapy, power system, hydrodynamics and computer communication networks. There are many prominent areas of systems and control theory that include systems governed by linear and nonlinear ordinary differential equations, systems governed by partial differential equations including their stochastic counter parts and, above all, systems governed by abstract differential and functional differential equations and inclusions on Banach spaces, including their stochastic counterparts. The objective of this book is to present a small segment of theory and applications of systems and control governed by ordinary differential equations and inclusions. It is expected that any reader who has absorbed the materials presented here would have no difficulty to reach the core of current research.




System Dynamics and Control


Book Description

This applied and comprehensive book combines topical coverage of both System Dynamics and Automatic Controls in one text, resulting in a pedagogically sound presentation of both subjects that can be used in this standard two-course sequence. It is thorough and complete, with, according to one reviewer, a "tremendous number of interesting practice problems covering a broad range of areas, giving the instructor significant choice and flexibility" in teaching the material. The book also has a wealth of worked-out, real-world examples, with every step clearly shown and explained. Cumulative examples that build through succeeding chapters demonstrate the stages of system modeling, from initial steps - which include the important but often omitted physical modeling process - through mathematical analysis to design realization. The result is a new and unified presentation of system dynamics and control, founded on a wide range of systems (mechanical, electrical, electromechanical - including MEMS, fluid, thermal, and chemical), with a common state-space approach.




Multibody System Dynamics, Robotics and Control


Book Description

The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.




System Dynamics


Book Description




System Dynamics and Control with Bond Graph Modeling


Book Description

Written by a professor with extensive teaching experience, System Dynamics and Control with Bond Graph Modeling treats system dynamics from a bond graph perspective. Using an approach that combines bond graph concepts and traditional approaches, the author presents an integrated approach to system dynamics and automatic controls. The textbook guide