Manipulation and Control of Jets in Crossflow


Book Description

Fundamental Non-Reactive Jets in Crossflow and Other Jet Systems; Background on Modeling, Dynamical Systems, and Control; Reactive Jets in Crossflow and Multiphase Jets; Controlled Jets in Crossflow and Control via Jet Systems;




Control of Fluid Flow


Book Description

This monograph presents the state of the art of theory and applications in fluid flow control, assembling contributions by leading experts in the field. The book covers a wide range of recent topics including vortex based control algorithms, incompressible turbulent boundary layers, aerodynamic flow control, control of mixing and reactive flow processes or nonlinear modeling and control of combustion dynamics.




Control of Fluid Flow


Book Description

This monograph presents the state of the art of theory and applications in fluid flow control, assembling contributions by leading experts in the field. The book covers a wide range of recent topics including vortex based control algorithms, incompressible turbulent boundary layers, aerodynamic flow control, control of mixing and reactive flow processes or nonlinear modeling and control of combustion dynamics.




Active Flow Control II


Book Description

The interest in the field of active flow control (AFC) is steadily increasing. In - cent years the number of conferences and special sessions devoted to AFC org- ized by various institutions around the world continuously rises. New advanced courses for AFC are offered by the American Institute of Aeronautics and Ast- nautics (AIAA), the European Research Community on Flow, Turbulence and Combustion (ERCOFTAC), the International Centre for Mechanical Sciences (CISM), the von Karman Institute for Fluid Dynamics (VKI), to name just a few. New books on AFC are published by prominent colleagues of our field and even a new periodical, the ‘International Journal of Flow Control’, appeared. Despite these many activities in AFC it was felt that a follow-up of the highly successful ‘ACTIVE FLOW CONTROL’ Conference held in Berlin in 2006 was appropriate. As in 2006, ‘ACTIVE FLOW CONTROL II’ consisted only of invited lectures. To sti- late multidisciplinary discussions between experimental, theoretical and numerical fluid dynamics, aerodynamics, turbomachinary, mathematics, control engineering, metrology and computer science parallel sessions were excluded. Unfortunately, not all of the presented papers made it into this volume. As the preparation and printing of a book takes time and as this volume should be available at the conf- ence, the Local Organizing Committee had to set up a very ambitious time sch- ule which could not be met by all contributors.




Synthetic Jets


Book Description

Compiles Information from a Multitude of SourcesSynthetic jets have been used in numerous applications, and are part of an emergent field. Accumulating information from hundreds of journal articles and conference papers, Synthetic Jets: Fundamentals and Applications brings together in one book the fundamentals and applications of fluidic actuators.




Turbulence Structure and Modulation


Book Description

Controlling turbulence is an important issue for a number of technological applications. Several methods to modulate turbulence are currently being investigated. This book describes various aspects of turbulence structure and modulation, and explains and discusses the most promising techniques in detail.




Suppression of Dynamic Stall by Steady and Pulsed Upper-Surface Blowing


Book Description

The Boeing-Vertol VR-7 airfoil was experimentally studied with steady and pulsed upper-surface blowing for sinusoidal pitching oscillations described by alpha = alpha(sub m) + 10 deg sin(omega t). The tests were conducted in the U.S. Army Aeroflightdynamics Directorate's Water Tunnel at NASA Ames Research Center. The experiment was performed at a Reynolds number of 100,000. Pitch oscillations with alpha(sub m) = 10 deg and 15 deg and with reduced frequencies ranging from k = 0.005 to 0.15 were examined. Blowing conditions ranged from C(sub mu) = 0.03 to 0.66 and F(+) = 0 to 3. Unsteady lift, drag, and pitching-moment loads were measured, and fluorescent-dye flow visualizations were obtained. Steady, upper-surface blowing was found to be capable of trapping a separation bubble near the leading edge during a portion of the airfoil's upward rotation. When this occurred, the lift was increased significantly and stall was averted. In all cases, steady blowing reduced the hysteresis amplitudes present in the loads and produced a large thrust force. The benefits of steady blowing diminished as the reduced frequency and mean angle of oscillation increased. Pulsed blowing showed only marginal benefits for the conditions tested. The greatest gains from pulsed blowing were achieved at F(+) = 0.9.




Recent Progress in Flow Control for Practical Flows


Book Description

This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control.