H8-Control for Distributed Parameter Systems: A State-Space Approach


Book Description

VI 5.3 Proof of the measurement-feedback result. 144 5.4 Relaxation of the a priori assumptions .. 165 5.4.1 Including the feedthroughs ... 165 5.4.2 How to 'remove' the regularity assumptions 174 6 Examples and conclusions 177 6.1 Delay systems in state-space ... 177 6.1.1 Dynamic controllers for delay systems. 180 184 6.1.2 A linear quadratic control problem . . 6.1.3 Duality ... 189 6.2 The mixed-sensitivity problem for delay systems 192 6.2.1 Introduction and statement of the problem. 192 6.2.2 Main result ... 194 6.3 Conclusions and directions for future research. 200 A Stability theory 205 A.1 205 A.2 206 B Differentiability and some convergence results 207 B.l 207 208 B.2 B.3 209 209 B.4 B.5 209 B.6 211 B.7 213 214 C The invariant zeros condition C.1 214 221 D The relation between P, Q and P 221 D.1 ... Bibliography 230 239 Index Preface Control of distributed parameter systems is a fascinating and challenging top ic, from both a mathematical and an applications point of view. The same can be said about Hoc-control theory, which has become very popular lately. I am therefore pleased to present in this book a complete treatment of the state-space solution to the Hoo-control problem for a large class of distributed parameter systems.




Distributed Parameter Control Systems


Book Description

Distributed Parameter Control Systems: Theory and Application is a two-part book consisting of 10 theoretical and five application-oriented chapters contributed by well-known workers in the distributed-parameter systems. The book covers topics of distributed parameter control systems in the areas of simulation, identification, state estimation, stability, control (optimal, stochastic, and coordinated), numerical approximation methods, optimal sensor, and actuator positioning. Five applications works include chemical reactors, heat exchangers, petroleum reservoirs/aquifers, and nuclear reactors. The text will be a useful reference for both graduate students and professional researchers working in the field.




Optimal Measurement Methods for Distributed Parameter System Identification


Book Description

For dynamic distributed systems modeled by partial differential equations, existing methods of sensor location in parameter estimation experiments are either limited to one-dimensional spatial domains or require large investments in software systems. With the expense of scanning and moving sensors, optimal placement presents a critical problem.







A Practical Guide to Geometric Regulation for Distributed Parameter Systems


Book Description

A Practical Guide to Geometric Regulation for Distributed Parameter Systems provides an introduction to geometric control design methodologies for asymptotic tracking and disturbance rejection of infinite-dimensional systems. The book also introduces several new control algorithms inspired by geometric invariance and asymptotic attraction for a wid




Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems


Book Description

The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.







Adaptive Control of Parabolic PDEs


Book Description

This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.




Numerical Simulation of Distributed Parameter Processes


Book Description

The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodynamics, electromechanics) in which the use of PDEs and ODEs is justified.




Active Spanwise Lift Control


Book Description

Presents a novel approach to tackle the gust alleviation problem. The authors address the spanwise behaviour of aerodynamic loads, as this is what should be primarily controlled. Because the gust loads are mainly caused by disturbances in the spanwise lift, the aim is at controlling the shape of the lift distribution profile along the span.