Robust Control in Power Systems


Book Description

Robust Control in Power Systems deals with the applications of new techniques in linear system theory to control low frequency oscillations in power systems. The book specifically focuses on the analysis and damping of inter-area oscillations in the systems which are in the range of 0.2-1 Hz. The damping control action is injected through high power electronic devices known as flexible AC transmission system (FACTS) controllers. Three commonly used FACTS controllers: controllable series capacitors (CSCs) controllable phase shifters (CPSs) and static var compensators (SVCs) have been used in this book to control the inter-area oscillations. The overview of linear system theory from the perspective of power system control is explained through examples. The damping control design is formulated as norm optimization problem. The H_infinity, H2 norm of properly defined transfer functions are minimized in linear matrix inequalities (LMI) framework to obtain desired performance and stability robustness. Both centralized and decentralized control structures are used. Usually the transmission of feedback signal from a remote location encounters delays making it difficult to control the system. Smith predictor based approach has been successfully explored in this book as a solution to such a problem. Robust Control in Power Systems will be valuable to academicians in the areas of power, control and system theory, as well as professionals in the power industry.




Voltage Control in the Future Power Transmission Systems


Book Description

This book reports on the formulation of a multi-stage optimization framework for the Danish power system, taking into account the real operational cost, the voltage constraints and the uncertainty associated to the forecasting errors of the wind power. It describes in detail the implementation of this framework into a simulation platform and its validation in real-world applications. The book especially focuses on automatic voltage control systems and on methods to handle uncertainty in them. All in all, it provides readers with a comprehensive overview of power system optimization and future trends in power system operation.




HVDC Power Transmission Systems


Book Description

Hvdc Transmission Technology Is Fast Advancing And Its Applications Are Rapidly Expanding. This Book Presents The Various Aspects Of Hvdc Technology In Sufficient Depth To A Beginner. In Addition, It Also Includes The Analysis And Simulation Of Ac-Dc System Interactions Which Are Of Importance In The Planning, Design And Operation Of Hvdc Systems. The Book Gives Up-To-Date Information And Integrates Material That Has Been Scattered In Several Journals.The Book Is Divided Into Two Parts. The First Part Has 9 Chapters And Covers The Techniques And Components Of Hvdc Systems In Detail. The Emphasis Is On The Unique Components Of Hvdc Systems, Such As Thyristor Valves, Converters, Control, Protection And Harmonic Filters. One Chapter Each Is Devoted To Each Of These Items. Reactive Power Control And Multiterminal Dc System Operation Are Also Included As Two Separate Chapters. Static Var Systems Used For Reactive Power Control In Converter Stations Are Also Discussed.The Second Part Of The Book Deals With The Modelling, Analysis And Simulation Of Ac/Dc Systems. Seven Chapters Are Included In This Part Which Cover Component Models, Power Flow, Transient Stability, Dynamic Stability And Power Modulation, Harmonic And Torsional Interactions, Simulation Of Converters And Hvdc Systems. The Coverage Is Fairly Detailed And Includes Some New Information Not Published Before.The Book Should Be Of Interest To Graduate Students, Researchers And Engineers From Utilities/Industries Who Are Involved With Hvdc Power Transmission.




Thyristor-Based FACTS Controllers for Electrical Transmission Systems


Book Description

An important new resource for the international utility market Over the past two decades, static reactive power compensators have evolved into a mature technology and become an integral part of modern electrical power systems. They are one of the key devices in flexible AC transmission systems (FACTS). Coordination of static compensators with other controllable FACTS devices promises not only tremendously enhanced power system controllability, but also the extension of power transfer capability of existing transmission corridors to near their thermal capacities, thus delaying or even curtailing the need to invest in new transmission facilities. Offering both an in-depth presentation of theoretical concepts and practical applications pertaining to these power compensators, Thyristor-Based FACTS Controllers for Electrical Transmission Systems fills the need for an appropriate text on this emerging technology. Replete with examples and case studies on control design and performance, the book provides an important resource for both students and engineers working in the field.




Control of Flexible Alternating Current Transmission System (FACTS) for Power Stability Enhancement


Book Description

The thesis will try to summarise the major power system problems and the important role of the FACTS devices to enhance the power system quality. Then, it will give a brief description for various FACTS and Active Filters controllers as mentioned on the existing publications. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. Chapter 1: Gives a general description of most power system problems and the basic techniques used to improve the power system quality. It also gives idea about basic objectives from the FACTS devices. Chapter 2: Offers detailed description for the basic types of FACTS devices and active filters existing in power industry. Chapter 3: Describes various shunt controllers for control of the Static Compensator (STATCOM) and various series controllers for the control of the Static Synchronous Series Compensator (SSSC) and various Unified Power Flow Controllers (UPFC) as covered in most existing papers. Chapter 4: Describes the major control schemes for the shunt active filter as covered by most existing papers. Chapter 5: Describes the major control schemes for the other types of active filters as covered by most existing papers. Chapter 6: Gives description for optimal control design. Chapter 7: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.




Electrical Power Transmission System Engineering


Book Description

Today, there are various textbooks dealing with a broad range of topics in the power system area of electrical engineering. Some of them are considered to be classics. However, they do not particularly concentrate on topics dealing with electric power transmission. Therefore, Electrical Power Transmission System Engineering: Analysis and Design, as a textbook, is unique; it is written specifically for an in-depth study of modern power transmission engineering. Written in the classic, self-learning style of the original, Electrical Power Transmission System Engineering: Analysis and Design, Fourth Edition is updated and features: HVDC system operation and control Renewable energy (including wind and solar energy) Detailed numerical examples and problems MATLAB® applications This book includes a comprehensive and systematic introduction of electric power transmission systems, from basic transmission planning and concepts to various available types of transmission systems. Written particularly for a student or practicing engineer who may want to teach himself or herself, the basic material has been explained carefully, clearly, and in detail with numerous examples, which is also useful for professors. In addition to detailed basic knowledge of transmission lines, new components enabling modern electronics and renewable penetrated transmission systems are emphasized. The discussion goes beyond the usual analytical and qualitative analysis to cover overall aspects of transmission system analysis and design.




Control of Flexible Alternating Current Transmission System (FACTS) for Power Stability Enhancement and Power Quality Improvement


Book Description

The thesis will try to summarise the major power system problems and the important role of the FACTS devices to enhance the power system quality. Then, it will give a brief description for various FACTS and Active Filters controllers as mentioned on the existing publications. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. · Chapter 1: Gives a general description of most power system problems and the basic techniques used to improve the power system quality. It also gives idea about basic objectives from the FACTS devices. · Chapter 2: Offers detailed description for the basic types of FACTS devices and active filters existing in power industry. · Chapter 3: Describes various shunt controllers for control of the Static Compensator (STATCOM) and various series controllers for the control of the Static Synchronous Series Compensator (SSSC) and various Unified Power Flow Controllers (UPFC) as covered in most existing papers. · Chapter 4: Describes the major control schemes for the shunt active filter as covered by most existing papers. · Chapter 5: Describes the major control schemes for the other types of active filters as covered by most existing papers. · Chapter 6: Gives description for optimal control design. · Chapter 7: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.




Automotive Power Transmission Systems


Book Description

Provides technical details and developments for all automotive power transmission systems The transmission system of an automotive vehicle is the key to the dynamic performance, drivability and comfort, and fuel economy. Modern advanced transmission systems are the combination of mechanical, electrical and electronic subsystems. The development of transmission products requires the synergy of multi-disciplinary expertise in mechanical engineering, electrical engineering, and electronic and software engineering. Automotive Power Transmission Systems comprehensively covers various types of power transmission systems of ground vehicles, including conventional automobiles driven by internal combustion engines, and electric and hybrid vehicles. The book covers the technical aspects of design, analysis and control for manual transmissions, automatic transmission, CVTs, dual clutch transmissions, electric drives, and hybrid power systems. It not only presents the technical details of key transmission components, but also covers the system integration for dynamic analysis and control. Key features: Covers conventional automobiles as well as electric and hybrid vehicles. Covers aspects of design, analysis and control. Includes the most recent developments in the field of automotive power transmission systems. The book is essential reading for researchers and practitioners in automotive, mechanical and electrical engineering.




Electrical Power Transmission System Engineering


Book Description

Electrical Power Transmission System Engineering: Analysis and Design is devoted to the exploration and explanation of modern power transmission engineering theory and practice. Designed for senior-level undergraduate and beginning-level graduate students, the book serves as a text for a two-semester course or, by judicious selection, the material




Flexible AC Transmission Systems: Modelling and Control


Book Description

This monograph presents advanced modelling, analysis and control techniques of FACTS. These topics reflect the recent research and development of FACTS controllers, and anticipate the future applications of FACTS in power systems. The book covers comprehensively a range of power-system control problems: from steady-state voltage and power flow control, to voltage and reactive power control, to voltage stability control, to small signal stability control using FACTS controllers. The book presents the modelling of the latest FACTS controllers for power flow control, compensation and power quality (IPFC, GUPF, VSC HVDC and M-VSCHVDC, etc.) in power system analysis. The selection is evaluated by the actual and likely future practical relevance of each. The material is derived mainly from the research and industrial development in which the authors have been heavily involved. The book is timely and of great value to power engineering engineers and students of modelling, simulations and control design of FACTS for a broad practical range of power system operation, planning and control problems.