Convex Bodies: The Brunn–Minkowski Theory


Book Description

A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.




Geometry of Isotropic Convex Bodies


Book Description

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.




The Volume of Convex Bodies and Banach Space Geometry


Book Description

A self-contained presentation of results relating the volume of convex bodies and Banach space geometry.




Convex Bodies and Algebraic Geometry


Book Description

The theory of toric varieties (also called torus embeddings) describes a fascinating interplay between algebraic geometry and the geometry of convex figures in real affine spaces. This book is a unified up-to-date survey of the various results and interesting applications found since toric varieties were introduced in the early 1970's. It is an updated and corrected English edition of the author's book in Japanese published by Kinokuniya, Tokyo in 1985. Toric varieties are here treated as complex analytic spaces. Without assuming much prior knowledge of algebraic geometry, the author shows how elementary convex figures give rise to interesting complex analytic spaces. Easily visualized convex geometry is then used to describe algebraic geometry for these spaces, such as line bundles, projectivity, automorphism groups, birational transformations, differential forms and Mori's theory. Hence this book might serve as an accessible introduction to current algebraic geometry. Conversely, the algebraic geometry of toric varieties gives new insight into continued fractions as well as their higher-dimensional analogues, the isoperimetric problem and other questions on convex bodies. Relevant results on convex geometry are collected together in the appendix.




Convex Bodies


Book Description

A comprehensive introduction to convex bodies giving full proofs for some deeper theorems which have never previously been brought together.










Geometry and Convexity


Book Description

This text assumes no prerequisites, offering an easy-to-read treatment with simple notation and clear, complete proofs. From motivation to definition, its explanations feature concrete examples and theorems. 1979 edition.







Theory of Convex Bodies


Book Description