Convolutional Neural Networks with Swift for Tensorflow


Book Description

Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.




Machine Learning by Tutorials (Second Edition)


Book Description

Learn Machine Learning!Machine learning is one of those topics that can be daunting at first blush. It's not clear where to start, what path someone should take and what APIs to learn in order to get started teaching machines how to learn.This is where Machine Learning by Tutorials comes in! In this book, we'll hold your hand through a number of tutorials, to get you started in the world of machine learning. We'll cover a wide range of popular topics in the field of machine learning, while developing apps that work on iOS devices.Who This Book Is ForThis books is for the intermediate iOS developer who already knows the basics of iOS and Swift development, but wants to understand how machine learning works.Topics covered in Machine Learning by TutorialsCoreML: Learn how to add a machine learning model to your iOS apps, and how to use iOS APIs to access it.Create ML: Learn how to create your own model using Apple's Create ML Tool.Turi Create and Keras: Learn how to tune parameters to improve your machine learning model using more advanced tools.Image Classification: Learn how to apply machine learning models to predict objects in an image.Convolutional Networks: Learn advanced machine learning techniques for predicting objects in an image with Convolutional Neural Networks (CNNs).Sequence Classification: Learn how you can use recurrent neural networks (RNNs) to classify motion from an iPhone's motion sensor.Text-to-text Transform: Learn how to use machine learning to convert bodies of text between two languages.By the end of this book, you'll have a firm understanding of what machine learning is, what it can and cannot do, and how you can use machine learning in your next app!




Pattern Recognition


Book Description

This three-volume set LNCS 14406-14408 constitutes the refereed proceedings of the 7th Asian Conference on Pattern Recognition, ACPR 2023, held in Kitakyushu, Japan, in November 2023. The 93 full papers presented were carefully reviewed and selected from 164 submissions. The conference focuses on four important areas of pattern recognition: pattern recognition and machine learning, computer vision and robot vision, signal processing, and media processing and interaction, covering various technical aspects.




Natural Language Processing with TensorFlow


Book Description

Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.




Generative Adversarial Networks in Practice


Book Description

This book is an all-inclusive resource that provides a solid foundation on Generative Adversarial Networks (GAN) methodologies, their application to real-world projects, and their underlying mathematical and theoretical concepts. Key Features: • Guides you through the complex world of GANs, demystifying their intricacies • Accompanies your learning journey with real-world examples and practical applications • Navigates the theory behind GANs, presenting it in an accessible and comprehensive way • Simplifies the implementation of GANs using popular deep learning platforms • Introduces various GAN architectures, giving readers a broad view of their applications • Nurture your knowledge of AI with our comprehensive yet accessible content • Practice your skills with numerous case studies and coding examples • Reviews advanced GANs, such as DCGAN, cGAN, and CycleGAN, with clear explanations and practical examples • Adapts to both beginners and experienced practitioners, with content organized to cater to varying levels of familiarity with GANs • Connects the dots between GAN theory and practice, providing a well-rounded understanding of the subject • Takes you through GAN applications across different data types, highlighting their versatility • Inspires the reader to explore beyond this book, fostering an environment conducive to independent learning and research • Closes the gap between complex GAN methodologies and their practical implementation, allowing readers to directly apply their knowledge • Empowers you with the skills and knowledge needed to confidently use GANs in your projects Prepare to deep dive into the captivating realm of GANs and experience the power of AI like never before with Generative Adversarial Networks (GANs) in Practice. This book brings together the theory and practical aspects of GANs in a cohesive and accessible manner, making it an essential resource for both beginners and experienced practitioners.




Brain Informatics


Book Description

This book constitutes the proceedings of the 16th International Conference on Brain Informatics, BI 2023, which was held in Hoboken, NJ, USA, during August 1–3, 2023. The 40 full papers presented in this book were carefully reviewed and selected from 101 submissions. The papers are divided into the following topical sections: cognitive and computational foundations of brain science; investigations of human Information processing systems; brain big data analytics, curation and management; informatics paradigms for brain and mental health research; brain-machine intelligence and brain-inspired computing; and the 5th international workshop on cognitive neuroscience of thinking and reasoning.







8th URV Doctoral Workshop in Computer Science and Mathematics


Book Description

This book contains the proceedings of the 8th Doctoral Workshop in Computer Science and Mathematics - DCSM 2023. It was celebrated in Universitat Rovira i Virgili (URV), Campus Sescelades, Tarragona, on May 3, 2023. The aim of this workshop is to promote the dissemination of ideas, methods, and results developed by the students of the PhD program in Computer Science and Mathematics from URV.