Molecular Genetic Approaches to Maize Improvement


Book Description

During the past decade, there has been tremendous progress in maize biotechnology. This volume provides an overview of our current knowledge of maize molecular genetics, how it is being used to improve the crop, and future possibilities for crop enhancement. Several chapters deal with genetically engineered traits that are currently, or soon will be, in commercial production. Technical approaches for introducing novel genes into the maize genome, the regeneration of plants from transformed cells, and the creation of transgenic lines for field production are covered. Further, the authors describe how molecular genetic techniques are being used to identify genes and characterize their function, and how these procedures are utilized to develop elite maize germplasm. Moreover, molecular biology and physiological studies of corn as a basis for the improvement of its nutritional and food-making properties are included. Finally, the growing use of corn as biomass for energy production is discussed.




Sustainable Ethanol


Book Description

In this resource, the authors uncover the benefits and limitations of North America's fuel ethanol industry.




Alcohol Fuel


Book Description

Dwindling petroleum supplies and growing environmental concerns are significantly impacting the cost of petro-fuel and its infrastructure. The search for alternative fuel sources has led to ethanol, a gasoline substitute that is already in the marketplace as Gasohol and E-85. But large-scale production of corn-based ethanol is controversial as it threatens the world’s food supply. There are alternatives, however: Brazil uses sugar cane, which is up to six times more productive in energy conversion. After the energy crisis of the 1970s, there was a lot of misinformation about the cost of individual ethanol production. In order to achieve energy independence from gasoline, ethanol lends itself to small-scale production, and especially to cooperative ventures in rural communities, often using “waste” feedstock. Alcohol Fuel is a practical, grassroots book that will give readers all the information they need, covering every aspect of making and using ethanol for fuel, including: *Permitting and planning *Budgeting and setup *Sourcing feedstocks *Finding and building distillation equipment *Storage and safety *Practical applications for converting motor vehicles, farm equipment, and space-heating systems The practical, user-friendly information on basic equipment needs, fermentation recipes, and distillation designs will be of interest to readers looking for information, as well as to those ready to make the switch. Richard Freudenberger was research director of Mother Earth News, where he managed the Alcohol Fuel Program and developed solar and renewable solar and energy projects. He is publisher and technical editor of BackHome magazine and lives in Hendersonville, North Carolina.




Biofuels


Book Description

The edited volume presents the progress of first and second generation biofuel production technology in selected countries. Possibility of producing alternative fuels containing biocomponents and selected research methods of biofuels exploitation characteristics (also aviation fuels) was characterized. The book shows also some aspects of the environmental impact of the production and biofuels using, and describes perspectives of biofuel production technology development. It provides the review of biorefinery processes with a particular focus on pretreatment methods of selected primary and secondary raw materials. The discussion includes also a possibility of sustainable development of presented advanced biorefinery processes.




Bioethanol Production from Food Crops


Book Description

Bioethanol Production from Food Crops: Sustainable Sources, Interventions and Challenges comprehensively covers the global scenario of ethanol production from both food and non-food crops and other sources. The book guides readers through the balancing of the debate on food vs. fuel, giving important insights into resource management and the environmental and economic impact of this balance between demands. Sections cover Global Bioethanol from Food Crops and Forest Resource, Bioethanol from Bagasse and Lignocellulosic wastes, Bioethanol from algae, and Economics and Challenges, presenting a multidisciplinary approach to this complex topic. As biofuels continue to grow as a vital alternative energy source, it is imperative that the proper balance is reached between resource protection and human survival. This book provides important insights into achieving that balance. - Presents technological interventions in ethanol production, from plant biomass, to food crops - Addresses food security issues arising from bioethanol production - Identifies development bottlenecks and areas where collaborative efforts can help develop more cost-effective technology




Handbook on Bioethanol


Book Description

Bioethanol is a versatile transportation fuel and fuel additive that offers excellent performance and reduced air pollution compared to conventional fuels. Its production and use adds little, if any, net release of carbon dioxide to the atmosphere, dramatically reducing the potential for global climate change. Through a sustained research program and an emerging economic competitiveness, the technology for bioethanol production is poised for immediate widespread commercial applications. Written by engineers and scientists providing a technical focus, this handbook provides the up-to-date information needed by managers, engineers, and scientists to evaluate the technology, market, and economics of this fuel, while examining the development of production required to support its commercial use.




Fuel from Farms


Book Description

Decision to produce; Markets and uses; Market assessment; Prodution potential; Equipment selection; Financial requirements; Decision and planning workssheets; Basic ethanol production; Preparation of feedstocks, Fermentation; Distillation; Types of feedstocks; Coproduct yields; Agronomic considerations; Plant design; Overall plant considerations; Process control; Representative ethanol plant; Maintenance checklist; Business plan; Analysis of financial requirements; Organizational form; Financing; Case study; Summary of legislation; Bureau of alcohol, tabacco, and firearms permit information; Enviromental considerations.




Duckweed Ethanol


Book Description

The smallest flowering plant, on Earth, is one of the most powerful, and widespread: duckweed. Usually, considered a nuisance, duckweed, upon close examination, is an impressive crop, in photosynthetic value. Ethanol, an industry dominated by the Corn Industry (King Corn), faces many challenges, including large water draws, rising fertilizer costs, large diesel fuel bills, and unintended impacts on Food markets. Corn, as a choice for ethanol production, pits food, versus fuel, for agricultural resources, increasing stresses between fundamental markets. An ideal source of biomass, for ethanol production, would not be a food crop, rather, a waste-crop. King Corn, dominates current domestic ethanol production markets, worth billions, each year. Supported with Federal Farm Subsidies, worth billions of dollars annually, the corn industry dictates the US ethanol markets, using Corn as the principle feedstock crop. At first glance, Corn, is an odd choice for ethanol production. Corn, began as a wild seed crop, domesticated by ancient man. Before the modern age, thousands of years of selective breeding, produced a Corn rich in proteins, and high in nutritional value. Modern Corn, has been engineered to go "the other direction," and reduce Corn's Protein, and increase Corn's Starch (Carbohydrate) production. The "Starch" in corn, is used for Ethanol production, and other by-products, such as Corn Syrup, and Distillers Dried Grains and Solubles (DDGS). Duckweed, is a choice for bulk biomass, which offers significant advantages over corn. Duckweed advantages include, lower energy costs, lower water resources, lower fertilizer costs, doesn't require valuable farmland, doesn't compete in Food markets, has higher Starch yield, per acre. Duckweed, in a controlled environment, can be grown, year round, and in diverse locations. Corn, as a bulk source of Starch production, competes with Food markets, drinks thousands of gallons of water, per gallon Ethanol produced, requires large diesel fuel bills for growing, and harvesting, requires large amounts of fertilizers, and lower's the nutritional value of Corn on purpose, to produce more starch, reducing protein production, and nutritional value.




Handbook of Cellulosic Ethanol


Book Description

Comprehensive coverage on the growing science and technologyof producing ethanol from the world's abundant cellulosicbiomass The inevitable decline in petroleum reserves and its impact ongasoline prices, combined with climate change concerns, havecontributed to current interest in renewable fuels. Bioethanol isthe most successful renewable transport fuel—with corn andsugarcane ethanol currently in wide use as blend-in fuels in theUnited States, Brazil, and a few other countries. However, thereare a number of major drawbacks in these first-generation biofuels,such as their effect on food prices, net energy balance, and poorgreenhouse gas mitigation. Alternatively, cellulosic ethanol can beproduced from abundant lignocellulosic biomass forms such asagricultural or municipal wastes, forest residues, fast growingtrees, or grasses grown in marginal lands, and should be produciblein substantial amounts to meet growing global energy demand. The Handbook of Cellulosic Ethanol covers all aspects ofthis new and vital alternative fuel source, providing readers withthe background, scientific theory, and recent research progress inproducing cellulosic ethanol via different biochemical routes, aswell as future directions. The seventeen chapters includeinformation on: Advantages of cellulosic ethanol over first-generation ethanolas a transportation fuel Various biomass feedstocks that can be used to make cellulosicethanol Details of the aqueous phase or cellulolysis route,pretreatment, enzyme or acid saccharification, fermentation,simultaneous saccharification fermentation, consolidatedbioprocessing, genetically modified microorganisms, and yeasts Details of the syngas fermentation or thermochemical route,gasifiers, syngas cleaning, microorganisms for syngas fermentation,and chemical catalysts for syngas-to-ethanol conversion Distillation and dehydration to fuel-grade ethanol Techno-economical aspects and the future of cellulosicethanol Readership Chemical engineers, chemists, and technicians working onrenewable energy and fuels in industry, research institutions, anduniversities. The Handbook can also be used by studentsinterested in biofuels and renewable energy issues.




Renewable Fuel Standard


Book Description

In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.