Corneal Angiogenesis


Book Description

In this research monograph, the noted scholar Dr. Gordon K. Klintworth brings together all the available information on the pathogenesis of corneal neovascularization. This book should be a valuable contribution to the medical literature of ophthalmology and clinical pathology. Despite its relatively simple structure the cornea possesses many unique properties. These attributes include its crystal clarity and avascularity in the health state. This normally transparent structure has been the focal point for Dr. Klintworth's research endeavors for more than two decades. This monograph summarizes current knowledge about angiogenesis within this tissue as well as information about the related issue of the cornea's normal avascularity. The text provides a comprehensive overview of the topic based on studies by a large number of investigators who were either concerned with corneal neovascularization in particular or angiogenesis in general.




Angiogenesis Assays


Book Description

Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.




Physiologic and Pathologic Angiogenesis


Book Description

The purpose of this book is to highlight novel advances in the field and to incentivize scientists from a variety of fields to pursue angiogenesis as a research avenue. Blood vessel formation and maturation to capillaries, arteries, or veins is a fascinating area which can appeal to multiple scientists, students, and professors alike. Angiogenesis is relevant to medicine, engineering, pharmacology, and pathology and to the many patients suffering from blood vessel diseases and cancer, among others. We are hoping that this book will become a source of inspiration and novel ideas for all.




Corneal Angiogenesis


Book Description

In this research monograph, the noted scholar Dr. Gordon K. Klintworth brings together all the available information on the pathogenesis of corneal neovascularization. This book should be a valuable contribution to the medical literature of ophthalmology and clinical pathology. Despite its relatively simple structure the cornea possesses many unique properties. These attributes include its crystal clarity and avascularity in the health state. This normally transparent structure has been the focal point for Dr. Klintworth's research endeavors for more than two decades. This monograph summarizes current knowledge about angiogenesis within this tissue as well as information about the related issue of the cornea's normal avascularity. The text provides a comprehensive overview of the topic based on studies by a large number of investigators who were either concerned with corneal neovascularization in particular or angiogenesis in general.




In Vivo Models to Study Angiogenesis


Book Description

In Vivo Models to Study Angiogenesis provides the latest information and an overview of the most common assays for studying angiogenesis in vivo. Under physiological conditions, angiogenesis is tightly controlled, whereas increased production of angiogenic stimuli and/or reduced production of angiogenic inhibitors leads to abnormal neovascularization, such as occurs in cancer, chronic inflammatory disease, diabetic retinopathy, macular degeneration and cardiovascular disorders. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. This book presents the latest information from the extensive literature and research available. Evidence is now emerging that blood vessels themselves have the ability to provide instructive regulatory signals to surrounding non-vascular target cells during organ development. Thus, endothelial cell signaling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodeling. - Provides information on the most common assays to study angiogenesis in vivo - Presents an ideal reference for those interested in angiogenesis as a normal and vital process in growth and development - Covers wound healing, the formation of granulation tissue, and the transition of tumors from benign to malignant




Ocular Angiogenesis


Book Description

Leading academic and pharmaceutical researchers and clinicians from many disciplines synthesize and summarize current clinical and basic knowledge concerning abnormal growth of blood vessels in the eye, the cause of major neovascular eye diseases. The authors also identify and assess the most promising approaches with potential for commercial exploitation and discuss the challenges encountered in developing therapeutics for ocular neovascular diseases. Highlights include illuminating chapters on gene therapy and novel drug delivery systems and excellent summaries of the newest therapeutic approaches.




Foundations of Corneal Disease


Book Description

The field of cornea has seen tremendous advances over the last 40 years—this uniquely comprehensive book will discuss the history of these advances, current best practices in important diseases of the cornea and ocular surface, and examine future directions in diagnosis and management. Written by leading experts, many of whom trained under Claes Henrik Dohlman, MD, PhD, whose influence and many invaluable contributions have defined and shaped the field of cornea, each chapter will reflect the state of the art in the various aspects of cornea. Foundations of Corneal Disease: Past, Present, and Future contains six different sections, opening with an introduction which delves into the evolution of subspecialty training in cornea, and provides a historical perspective of our understanding of ocular surface disease. Section Two addresses perspectives on important corneal and external diseases including infectious keratitis, dry eye, and herpes simplex. Section Three and Section Four address surgery and surgical alternatives, and frontiers in corneal research. Section Six closes this book with a discussion of special topics: imaging the cornea, corneal blindness, eye banking, and clinical trials in dry eye, and explores future directions in this fast-paced field. Foundations of Corneal Disease: Past, Present, and Future contains is an ideal guide for corneal specialists, ophthalmology residents and fellows planning to enter cornea, corneal scientists, and to those in ophthalmology and visual science interested in a comprehensive resource on cornea and the history of this field.




Therapy for Ocular Angiogenesis


Book Description

Ocular angiogenesis, or the abnormal growth of blood vessels in the eye, is the cause of major neovascular eye diseases. With the new era of anti-angiogenic therapies, ophthalmologists have started treating many ocular diseases including macular degeneration, diabetic retinopathy, and retinal vascular occlusion using anti-angiogenic drugs. This book covers the basic pathophysiology of ocular angiogenesis and strategies for inhibition. The authors discuss the "Principles" of anti-angiogenic therapy, pre-clinical studies, future drugs on the horizon, drug delivery, and the "Practice" of the therapy in many ocular diseases. The book also includes chapters on diabetic macular edema, and various therapeutic options for this condition. A companion website includes the fully searchable text and an image bank.




Contact Lens Complications


Book Description

The new 2nd edition of this practical manual has been completely updated and revised to reflect the most current knowledge, research findings, technological developments, and updates in contact lens materials. With its broad coverage and systematic approach, it provides an intuitive approach to understanding, diagnosing, and treating contact lens complications. This lavishly illustrated text is recognized as a definitive resource on contact lens for practitioners and students.




Regulation of inflammation and angiogenesis in the cornea


Book Description

Inflammation and angiogenesis, the growth of new blood vessels from pre-existing ones, are involved in tumor growth, ocular diseases and wound healing. In ocular angiogenesis, new pathological vessels grow into a specific eye tissue, leak fluid, and disrupt vision. The development of safe and effective therapies for ocular angiogenesis is of great importance for preventing blindness, given that current treatments have limited efficacy or are associated with undesirable side effects. The search for alternative treatment targets requires a deeper understanding of inflammation and how it can lead to angiogenesis in the eye in pathologic situations. This thesis provides new insights into the regulation of inflammation and angiogenesis, particularly at the gene expression and phenotypic levels, in different situations characterized by angiogenesis of the cornea, often called corneal neovascularization. For instance, specific genes and pathways are either endogenously activated or suppressed during active inflammation, wound healing, and during resolution of inflammation and angiogenesis, serving as potential targets to modulate the inflammatory and angiogenic response. In addition, as part of the healing response to restore corneal transparency, inflammation and angiogenesis subside with time in the cornea. In this context, LXR/RXR signaling was found to be activated in a time-dependent manner, to potentially regulate resolution of inflammation and angiogenesis. During regression of new angiogenic capillaries, ghost vessels and empty basement membrane sleeves are formed, which can persist in the cornea for a long time. Here, ghost vessels were found to facilitate subsequent revascularization of the cornea, while empty basement membrane sleeves did not revascularize. The revascularization response observed here was characterised by vasodilation, increased inflammatory cell infiltration and by sprouting at the front of the reperfused vessels. Importantly, reactive oxygen species and nitrous oxide signaling among other pro-inflammatory pathways were activated, and at the same time anti-inflammatory LXR/RXR signaling was inhibited. The interplay between activation and inhibition of these pathways highlights potential mechanisms that regulate corneal revascularization. When treating corneal neovascularization clinically, corticosteroids are in widespread use due to their effectiveness. To minimize the many undesirable side effects associated with corticosteroid use, however, identifying new and more selective agents is of great importance. Here, it was observed that corticosteroids not only suppressed pro-inflammatory chemokines and cytokines, but also activated the classical complement pathway. Classical complement may represent a candidate for further selective therapeutic manipulation to investigate its effect on treatment of corneal neovascularization. In summary, this thesis identifies genes, pathways, and phenotypic responses involved in sprouting and remodeling of corneal capillaries, highlights novel pathways and factors that may regulate inflammation and angiogenesis in the cornea, and provides insights into regulation of capillary regression and reactivation. Further investigation of these regulatory mechanisms may offer alternative and effective treatment targets for the treatment of corneal inflammation and angiogenesis.