The Intrinsic Nature of Things


Book Description

This book recounts the extraordinary personal journey and scientific story of Hungarian-born mathematician and physicist Cornelius Lanczos. His life and his mathematical accomplishments are inextricably linked, reflecting the social upheavals and historical events that shaped his odyssey in 20th-century Hungary, Germany, the United States, and Ireland. In his life Lanczos demonstrated a remarkable ability to be at the right place, or work with the right person, at the right time. At the start of his scientific career in Germany he worked as Einstein's assistant for one year and stayed in touch with him for years thereafter. Reacting to anti-Semitism in Germany in the 1930s, he moved to the United States, where he would work on some of the earliest digital computers at the National Bureau of Standards. After facing suspicion of Communist sympathies during the McCarthy era in the 1950s, Lanczos would relocate once again, joining Schrödinger at the Dublin Institute for Advanced Studies. Gellai's biography analyzes a rich life and a body of work that reaches across many scientific disciplines.Lanczos made important contributions to several areas of mathematics and mathematical physics. His first major contribution was an exact solution of the Einstein field equations for gravity (in general relativity). He worked out the Fast Fourier Transform, but since there were no machines on which to run it, this accomplishment would be forgotten for 25 years. Once he had access to computers, Lanczos independently rediscovered what is now known as the singular value decomposition, a fundamental tool in numerical methods. Other significant contributions included an important discovery about the Weyl tensor, which is now known as the Lanczos potential, and an important contribution on algorithms for finding eigenvalues of large matrices.




NIST Special Publication


Book Description




Discourse on Fourier Series


Book Description

Originally published in 1966, this well-written and still-cited text covers Fourier analysis, a foundation of science and engineering. Many modern textbooks are filled with specialized terms and equations that may be confusing, but this book uses a friendly, conversational tone to clarify the material and engage the reader. The author meticulously develops the topic and uses 161 problems integrated into the text to walk the student down the simplest path to a solution. Intended for students of engineering, physics, and mathematics at both advanced undergraduate and graduate levels.




A Century of Excellence in Measurements, Standards, and Technology


Book Description

Established by Congress in 1901, the National Bureau of Standards (NBS), now the National Institute of Standards and Technology (NIST), has a long and distinguished history as the custodian and disseminator of the United States' standards of physical measurement. Having reached its centennial anniversary, the NBS/NIST reflects on and celebrates its first century with this book describing some of its seminal contributions to science and technology. Within these pages are 102 vignettes that describe some of the Institute's classic publications. Each vignette relates the context in which the publication appeared, its impact on science, technology, and the general public, and brief details about the lives and work of the authors. The groundbreaking works depicted include: A breakthrough paper on laser-cooling of atoms below the Doppler limit, which led to the award of the 1997 Nobel Prize for Physics to William D. Phillips The official report on the development of the radio proximity fuse, one of the most important new weapons of World War II The 1932 paper reporting the discovery of deuterium in experiments that led to Harold Urey's1934 Nobel Prize for Chemistry A review of the development of the SEAC, the first digital computer to employ stored programs and the first to process images in digital form The first paper demonstrating that parity is not conserved in nuclear physics, a result that shattered a fundamental concept of theoretical physics and led to a Nobel Prize for T. D. Lee and C. Y. Yang "Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor," a 1995 paper that has already opened vast new areas of research A landmark contribution to the field of protein crystallography by Wlodawer and coworkers on the use of joint x-ray and neutron diffraction to determine the structure of proteins




Einstein


Book Description

Albert Einstein (1879–1955) was the most influential physicist of the 20th century. Less well known is that fundamental philosophical problems, such as concept formation, the role of epistemology in developing and explaining the character of physical theories, and the debate between positivism and realism, played a central role in his thought as a whole. Thomas Ryckman shows that already at the beginning of his career - at a time when the twin pillars of classical physics, Newtonian mechanics and Maxwell’s electromagnetism were known to have but limited validity - Einstein sought to advance physical theory by positing certain physical principles as secure footholds. That philosophy produced his greatest triumph, the general theory of relativity, and his greatest failure, an unwillingness to accept quantum mechanics. This book shows that Einstein’s philosophy grew from a lifelong aspiration for a unified theoretical representation encompassing all physical phenomena. It also considers how Einstein’s theories of relativity and criticisms of quantum theory shaped the course of 20th-century philosophy of science. Including a chronology, glossary, chapter summaries, and suggestions for further reading, Einstein is an ideal introduction to this iconic figure in 20th-century science and philosophy. It is essential reading for students of philosophy of science, and is also suitable for those working in related areas such as physics, history of science, or intellectual history.




Solving Transcendental Equations


Book Description

Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute?not always needed, but indispensable when it is. The author?s goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations. Solving Transcendental Equations is unique in that it is the first book to describe the Chebyshev-proxy rootfinder, which is the most reliable way to find all zeros of a smooth function on the interval, and the very reliable spectrally enhanced Weyl bisection/marching triangles method for bivariate rootfinding, and it includes three chapters on analytical methods?explicit solutions, regular pertubation expansions, and singular perturbation series (including hyperasymptotics)?unlike other books that give only numerical algorithms for solving algebraic and transcendental equations. This book is written for specialists in numerical analysis and will also appeal to mathematicians in general. It can be used for introductory and advanced numerical analysis classes, and as a reference for engineers and others working with difficult equations.




Covered with Deep Mist


Book Description

The problem of quantum gravity is often viewed as the most pressing unresolved problem of modern physics: our theories of spacetime and matter, described respectively by general relativity (Einstein's theory of gravitation and spacetime) and quantum mechanics (our best theory of matter and the other forces of nature) resist unification. Covered with Deep Mist provides the first book-length treatment of the history of quantum gravity, focusing on its origins and earliest stages of development until the mid-1950s. Readers will be guided through the impacts on the problem of quantum gravity resulting from changes in the two ingredient theories, quantum theory and general relativity, which were themselves still under construction in the years studied. We examine how several of the core approaches of today were formed in an era when the field was highly unfashionable. The book aims to be accessible to a broad range of readers and goes beyond a merely technical examination to include social and cultural factors involved in the changing fortunes of the field. Suitable for both newcomers and seasoned quantum gravity professionals, the book will shine new light on this century-old, unresolved problem.