Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures


Book Description

Semiconductor nanostructures are attracting a great deal of interest as the most promising device with which to implement quantum information processing and quantum computing. This book surveys the present status of nanofabrication techniques, near field spectroscopy and microscopy to assist the fabricated nanostructures. It will be essential reading for academic and industrial researchers in pure and applied physics, optics, semiconductors and microelectronics. - The first up-to-date review articles on various aspects on quantum coherence, correlation and decoherence in semiconductor nanostructures




Optical Coherence and Quantum Optics


Book Description

This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media.




Mathematical Methods of Quantum Optics


Book Description

Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.




An Introduction to Quantum Optics


Book Description

This book offers a complete revision for its introduction to the quantum theory of light, including notable developments as well as improvements in presentation of basic theory and concepts, with continued emphasis on experimental aspects. The author provides a thorough overview on basic methods of classical and quantum mechanical measurements in quantum optics, enabling readers to analyze, summarize, and resolve quantum optical problems. The broad coverage of concepts and tools and its practical, experimental emphasis set it apart from other available resources. New discussions of timely topics such as the concept of the photon and distinguishability bring the entire contents up to date. Key Features: Provides a complete update of a classic textbook for the field. Features many new topics, including optical coherence, coherent and incoherent imaging, turbulence-free interferometry. Includes new chapters for intensity fluctuation correlation and thermal light ghost imaging, and biphoton imaging. Offers a complete overhaul of the introductory theory to give a more coherent and thorough treatment. Expands on discussions of optical tests of quantum theory, Popper’s experiment, Einstein’s locality questions, and the delayed choice quantum eraser.







Quantum Theory of Optical Coherence


Book Description

A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade.




Coherent States: Applications In Physics And Mathematical Physics


Book Description

This volume is a review on coherent states and some of their applications. The usefulness of the concept of coherent states is illustrated by considering specific examples from the fields of physics and mathematical physics. Particular emphasis is given to a general historical introduction, general continuous representations, generalized coherent states, classical and quantum correspondence, path integrals and canonical formalism. Applications are considered in quantum mechanics, optics, quantum chemistry, atomic physics, statistical physics, nuclear physics, particle physics and cosmology. A selection of original papers is reprinted.




Basic Optics


Book Description

Basic Optics: Principles and Concepts addresses in great detail the basic principles of the science of optics, and their related concepts. The book provides a lucid and coherent presentation of an extensive range of concepts from the field of optics, which is of central relevance to several broad areas of science, including physics, chemistry, and biology. With its extensive range of discourse, the book's content arms scientists and students with knowledge of the essential concepts of classical and modern optics. It can be used as a reference book and also as a supplementary text by students at college and university levels and will, at the same time, be of considerable use to researchers and teachers. The book is composed of nine chapters and includes a great deal of material not covered in many of the more well-known textbooks on the subject. The science of optics has undergone major changes in the last fifty years because of developments in the areas of the optics of metamaterials, Fourier optics, statistical optics, quantum optics, and nonlinear optics, all of which find their place in this book, with a clear presentation of their basic principles. Even the more traditional areas of ray optics and wave optics are elaborated within the framework of electromagnetic theory, at a level more fundamental than what one finds in many of the currently available textbooks. Thus, the eikonal approximation leading to ray optics, the Lagrangian and Hamiltonian formulations of ray optics, the quantum theoretic interpretation of interference, the vector and dyadic diffraction theories, the geometrical theory of diffraction, and similar other topics of basic relevance are presented in clear terms. The presentation is lucid and elegant, capturing the essential magic and charm of physics. All this taken together makes the book a unique text, of major contemporary relevance, in the field of optics. Avijit Lahiri is a well-known researcher, teacher, and author, with publications in several areas of physics, and with a broad range of current interests, including physics and the philosophy of science. - Provides extensive and thoroughly exhaustive coverage of classical and modern optics - Offers a lucid presentation in understandable language, rendering the abstract and difficult concepts of physics in an easy, accessible way - Develops all concepts from elementary levels to advanced stages - Includes a sequential description of all needed mathematical tools - Relates fundamental concepts to areas of current research interest




Symposia on Theoretical Physics and Mathematics 9


Book Description

This volume represents the proceedings of the Sixth Anniversary MATSCIENCE Symposium on Theoretical Physics held in January 1968 as well as the Seminar in Analysis held earlier, in December 1967. A new feature of this volume is that it includes also contributions dealing with applications of mathematics to domains other than theoretical physics. Accordingly, the volume is divided into three parts-Part I deals with theoretical physics, Part II with applications of mathematical methods, and Part III with pure mathematics. The volume begins with a contribution from Okubo who proposed a new scheme to explain the CP puzzle by invoking the intermediate vector bosons. Gordon Shaw from Irvine dealt with the crucial importance of the effects of CDD poles in partial wave dispersion relations in dynamical calculation of resonances. Applications of current algebra and quark models were considered in the papers of Divakaran, Ramachandran, and Rajasekharan. Dubin presented a rigorous formulation of the Heisenberg ferromagnet.




Rainbow And The Worm, The: The Physics Of Organisms (3rd Edition)


Book Description

This highly unusual book began as a serious inquiry into Schrödinger's question, “What is life?”, and as a celebration of life itself. It takes the reader on a voyage of discovery through many areas of contemporary physics, from non-equilibrium thermodynamics and quantum optics to liquid crystals and fractals, all necessary for illuminating the problem of life. In the process, the reader is treated to a rare and exquisite view of the organism, gaining novel insights not only into the physics, but also into “the poetry and meaning of being alive.”This much-enlarged third edition includes new findings on the central role of biological water in organizing living processes; it also completes the author's novel theory of the organism and its applications in ecology, physiology and brain science.